
Correction du DNS 12

EXERCICE 1

1) a) La fonction f est dérivable sur R \ {−d/c} et, pour tout x 6= −d/c on a

f ′(x) =
ad− bc

(cx+ d)2
.

Si ad− bc = 0, la fonction est constante égale à b/d.

Si ad− bc > 0, la fonction est strictement croissante sur ]−∞,−d/c[ et sur ]− d/c,+∞[. En −d/c elle tend vers +∞
à gauche et −∞ à droite.

Si ad − bc < 0, la fonction est strictement décroissante sur ] −∞,−d/c[ et sur ] − d/c,+∞[. En −d/c elle tend vers
−∞ à gauche et +∞ à droite.

Enfin f(x) =
ax+ b

cx+ d
=

x(a+ b/x)

x(c+ d/x)
=

a+ b/x

c+ d/x
tend vers a/c en +∞ et en −∞.

b) Soit x 6= −d/c. On a :

f(x) = x ⇔ ax+ b

cx+ d
= x ⇔ ax+ b = cx2 + dx ⇔ cx2 + (d− a)x− b = 0.

C’est une équation du second degré : elle a au plus deux solutions réelles. Ainsi f admet au plus deux points fixes.

2) a) D’après l’étude menée en 1)a) la fonction f est strictement décroissante sur ]−2,+∞[ et elle tend vers 1 en +∞.
Par conséquent f([1,+∞[) ⊂ [1,+∞[.

Montrons par récurrence que, pour tout n ∈ N, un ∈ [1,+∞[.

C’est vrai pour n = 0 car u0 = 1.

Soit n ∈ N. Supposons que un ∈ [1,+∞[. Alors un 6= −2, donc on peut calculer un+1, et f([1,+∞[) ⊂ [1,+∞[ donc
un+1 ∈ [1,+∞[.

Le théorème de récurrence permet de conclure.

b) On a :
f(x) = x ⇔ x2 + x− 6 = 0 ⇔ (x = 2 ou x = −3).

La fonction f a donc deux points fixes : −3 et 2.

c) Soit n ∈ N. On a :

vn+1 =
un+1 + 3

un+1 − 2
=

un+6

un+2
+ 3

un+6

un+2
− 2

=
un + 6 + 3un + 6

un + 6− 2un − 4
=

4un + 12

−un + 2
= −4

un + 3

un − 2
= −4vn

La suite (vn) est donc géométrique de raison −4.

d) On en déduit que vn = v0(−4)n = (−4)n+1 pour tout n ∈ N. Or :

vn =
un + 3

un − 2
⇔ unvn − 2vn = un + 3 ⇔ un(vn − 1) = 2vn + 3 ⇔ un =

2vn + 3

vn − 1
⇔ un =

2(−4)n+1 + 3

(−4)n+1 − 1
,

et donc

un =
2 + 3/(−4)n+1

1− 1/(−4)n+1

n→+∞−→ 2.

3) a) D’après l’étude menée en 1)a) la fonction f est strictement croissante sur ]1/2,+∞[. Par conséquent f([1, 2]) =
[f(1), f(2)] = [1, 4/3] ⊂ [1, 2].

En raisonnant comme en 2)a) on en déduit que la suite (un) est à valeurs dans [1, 2] (elle est donc bien définie car un

n’est jamais égal à 1/2).

b) On a :
f(x) = x ⇔ 2x2 − 4x+ 2 = 0 ⇔ x2 − 2x+ 1 = 0 ⇔ (x− 1)2 = 0 ⇔ x = 1.

La fonction f a donc un seul point fixe : 1.

c) Soit n ∈ N. On a :

vn+1 =
1

un+1 − 1
=

1
3un−2

2un−1
− 1

=
2un − 1

3un − 2− 2un + 1
=

2un − 1

un − 1
=

2un − 2 + 1

un − 1
= 2 +

1

un − 1
= 2 + vn



donc la suite (vn) est arithmétique de raison 2.

On en déduit que vn = v0 + 2n = 1 + 2n pour tout n ∈ N. Or :

vn =
1

un − 1
⇔ un − 1 =

1

vn
⇔ un =

1

vn
+ 1 ⇔ un =

1

2n+ 1
+ 1 =

2n+ 2

2n+ 1
.

EXERCICE 2

1) On a

I0 =

∫ π

4

0

1 dx =
π

4

et

I1 =

∫ π

4

0

tanx dx =

∫ π

4

0

sinx

cosx
dx = [− ln(cosx)]

π

4

0 = − ln

√
2

2
= −1

2
ln 2 + ln 2 =

ln 2

2
.

2) Pour tout n ∈ N :

In+1 − In =

∫ π

4

0

tann+1 x dx−
∫ π

4

0

tann x dx =

∫ π

4

0

(tann+1 x− tann x) dx =

∫ π

4

0

tann x(tanx− 1) dx.

Or pour tout x ∈
[

0,
π

4

]

on a 0 6 tanx 6 1, donc tann x(tanx− 1) 6 0. Par conséquent In+1 − In 6 0 : la suite (In)

est décroissante.

De plus on a In > 0 pour tout n donc la suite (In) est minorée par 0. Elle est donc convergente.

3) a) On pose x = tan t. Alors t = Arctanx donc dt =
dx

1 + x2
, et donc In =

∫ 1

0

xn

1 + x2
dx.

b) Pour tout x ∈ [0, 1], on a 1 6 1 + x2 6 2, donc
xn

2
6

xn

1 + x2
6 xn, et donc

1

2

∫ 1

0

xndx 6

∫ 1

0

xn

1 + x2
dx 6

∫ 1

0

xndx.

Or

∫ 1

0

xndx =

[

xn+1

n+ 1

]1

0

=
1

n+ 1
, donc on obtient l’encadrement

1

2(n+ 1)
6 In 6

1

n+ 1
.

Or lim
n→+∞

1

n+ 1
= 0, donc par le théorème des gendarmes lim

n→+∞

In = 0.

4) a) Soit n ∈ N. On a

In + In+2 =

∫ 1

0

xn

1 + x2
dx+

∫ 1

0

xn+2

1 + x2
dx =

∫ 1

0

xn + xn+2

1 + x2
dx =

∫ 1

0

xn(1 + x2)

1 + x2
dx =

∫ 1

0

xn dx =

[

xn+1

n+ 1

]1

0

=
1

n+ 1
.

b) On a I0 + I2 = 1 donc I2 =
π

4
− 1, et I1 + I3 =

1

2
donc I3 =

1

2
− ln 2

2
.

D’autre part, en passant à la limite dans l’égalité In + In+2 =
1

n+ 1
, on obtient L+ L = 0, d’où L = 0.

5) a) On intègre par parties (u(x) =
1

1 + x2
, u′(x) = − 2x

(1 + x2)2
, v′(x) = xn, v(x) =

xn+1

n+ 1
). On obtient

In =

[

1

n+ 1

xn+1

1 + x2

]1

0

+
2

n+ 1

∫ 1

0

xn+2

(1 + x2)2
dx =

1

2(n+ 1)
+

2

n+ 1

∫ 1

0

xn+2

(1 + x2)2
dx.

b) Pour tout x ∈ [0, 1], on a 1 6 (1 + x2)2 6 4, donc
xn+2

4
6

xn+2

(1 + x2)2
6 xn+2, et donc

∫ 1

0

xn+2

4
dx 6

∫ 1

0

xn+2

(1 + x2)2
dx 6

∫ 1

0

xn+2dx,



soit
1

4(n+ 3)
6

∫ 1

0

xn+2

(1 + x2)2
dx 6

1

n+ 3
.

Or lim
n→+∞

1

n+ 3
= 0, donc par le théorème des gendarmes lim

n→+∞

∫ 1

0

xn+2

(1 + x2)2
dx = 0.

c) Pour tout n ∈ N on a

nIn =
n

2(n+ 1)
+

2n

n+ 1

∫ 1

0

xn+2

(1 + x2)2
dx.

Or lim
n→+∞

n

2(n+ 1)
=

1

2
et lim

n→+∞

2n

n+ 1
= 2 donc d’après la question précédente

lim
n→+∞

nIn =
1

2
.

6) a) Pour tout k ∈ {0, . . . , n} on a
1

2k + 1
= I2k+2 + I2k. Par conséquent

n
∑

k=0

(−1)k

2k + 1
=

n
∑

k=0

(−1)k(I2k+2 + I2k) = I2 + I0 − I4 − I2 + I6 + I4 − . . .+ (−1)nI2n+2 + (−1)nI2n = I0 + (−1)nI2n+2.

On peut aussi raisonner par récurrence.

b) On a vu que lim
n→+∞

In = 0 donc lim
n→+∞

I2n+2 = 0 et donc lim
n→+∞

Sn = I0 =
π

4
.


