
Chapitre 10

CALCUL MATRICIEL - SYSTÈMES
LINÉAIRES

Dans tout le chapitre, K = R ou C.

I Calcul matriciel
1 Définitions

Une matrice de type (ou de taille) (n, p) à coefficients dans K est une famille (ai,j)1⩽i⩽n
1⩽j⩽p

d’éléments de K (on

écrira souvent aij au lieu de ai,j). On la représente sous forme d’un tableau rectangulaire :

A =


a11 a12 . . . a1p
a21 a22 . . . a2p
...

...
...

an1 an2 . . . anp


On note Mn,p(K) l’ensemble des matrices de type (n, p) sur K. Deux matrices sont égales si elles ont les mêmes
coefficients.

Une matrice ligne est une matrice de type (1, p) : A =
(
a11 a12 . . . a1p

)
.

Une matrice colonne est une matrice de type (n, 1) : A =


a11
a21
...

an1

.

La matrice nulle deMn,p(K) est celle dont tous les coefficients sont nuls. On la note 0n,p ou simplement 0 s’il n’y
a pas d’ambigüıté.

Une matrice carrée d’ordre n sur K est une matrice de type (n, n) sur K : A = (aij)1⩽i,j⩽n =

a11 . . . a1n
...

...
an1 . . . ann

.

On noteMn(K) l’ensemble des matrices carrées d’ordre n sur K (doncMn(K) =Mn,n(K)).

La diagonale de A ∈ Mn(K) est la famille (a11, a22, . . . , ann). La trace de A est la somme des coefficients de la
diagonale. On la note TrA :

TrA = a11 + a22 + . . .+ ann.

Une matrice carrée est diagonale (respectivement triangulaire supérieure, triangulaire inférieure) si elle est de
la forme : 

a11 0 . . . 0

0 a22
. . .

...
...

. . .
. . . 0

0 . . . 0 ann



a11 a12 . . . a1n

0 a22
. . .

...
...

. . .
. . . an−1,n

0 . . . 0 ann



a11 0 . . . 0

a21 a22
. . .

...
...

. . .
. . . 0

an1 . . . an,n−1 ann

 ,

respectivement.

2 Addition et multiplication par un scalaire
On définit une addition + surMn,p(K) : si A = (aij)1⩽i⩽n

1⩽j⩽p
et B = (bij)1⩽i⩽n

1⩽j⩽p
, on pose :

A+B = (aij + bij)1⩽i⩽n
1⩽j⩽p

.
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Par exemple,

(
1 2 3
−1 4 5

)
+

(
3 4 6
−3 0 −1

)
=

(
4 6 9
−4 4 4

)
.

On définit une multiplication par un scalaire . surMn,p(K) : si A = (aij)1⩽i⩽n
1⩽j⩽p

et que α ∈ K, on pose :

α.A = (αaij)1⩽i⩽n
1⩽j⩽p

.

Par exemple, 3

 1 2
4 5
−1 −3

 =

 3 6
12 15
−3 −9

.

Proposition 1

(i) L’addition est commutative : ∀A,B ∈Mn,p(K), A+B = B +A.

(ii) L’addition est associative : ∀A,B,C ∈Mn,p(K), (A+B) + C = A+ (B + C).

(iii) La matrice nulle 0 est élément neutre pour + : ∀A ∈Mn,p(K), A+ 0 = 0 +A = A.

(iv) Toute matrice A = (aij) admet pour opposé la matrice −A = (−aij) : A+ (−A) = −A+A = 0.

(v) Soient A,B ∈Mn,p(K) et α, β ∈ K. Alors :

(a) 1.A = A.

(b) α.(β.A) = (αβ).A.

(c) (α+ β).A = α.A+ β.A.

(d) α.(A+B) = α.A+ α.B.

Démonstration : Vérifications immédiates. □

3 Produit matriciel
• Définition

Définition 1 Soient A = (aij)1⩽i⩽n
1⩽j⩽p

∈Mn,p(K) et B = (bjk)1⩽j⩽p
1⩽k⩽q

∈Mp,q(K). La matrice produit des matrices

A et B est la matrice A×B = (cik)1⩽i⩽n
1⩽k⩽q

∈Mn,q(K) définie par :

∀ i ∈ {1, . . . , n}, ∀ k ∈ {1, . . . , q}, cik =

p∑
j=1

aijbjk.

On notera que pour pouvoir calculer A× B, le nombre de colonnes de A doit être égal au nombre de lignes de B, et
que le produit d’une matrice de type (n, p) et d’une matrice de type (p, q) donne une matrice de type (n, q). Pour le
calcul on pourra utiliser la disposition suivante : 

b1k
b2k
...

bpk


ai1 ai2 . . . aip


 cik


cik = ai1b1k + ai2b2k + . . .+ aipbpk =

p∑
j=1

aijbjk.

Exemple : Soient A =

(
−1 1 4
2 0 3

)
et B =

 1 −2 4 0
5 1 −2 3
−2 0 1 −3

. Alors AB =

(
−4 3 −2 −9
−4 −4 11 −9

)
:
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 1 −2 4 0
5 1 −2 3
−2 0 1 −3


(
−1 1 4
2 0 3

) (
−4 3 −2 −9
−4 −4 11 −9

)
Remarques :

1) La je colonne de AB est le produit de A par la je colonne de B.

2) La ie ligne de AB est le produit de la ie ligne de A par B.

3) Si X est une matrice colonne, AX est une combinaison linéaire des colonnes de A. Plus précisément, si on note

C1, . . . , Cp les colonnes de A et que X =

x1

...
xp

, alors AX = x1C1 + . . .+ xpCp.

• Associativité

Proposition 2 Soient A ∈Mn,p(K), B ∈Mp,q(K) et C ∈Mq,r(K). Alors :

(A×B)× C = A× (B × C).

Démonstration : Soient A = (aij)1⩽i⩽n
1⩽j⩽p

, B = (bjk)1⩽j⩽p
1⩽k⩽q

et C = (ckl)1⩽k⩽q
1⩽l⩽r

.

Alors AB = (dik)1⩽i⩽n
1⩽k⩽q

où dik =

p∑
j=1

aijbjk et BC = (ejl)1⩽j⩽p
1⩽l⩽r

où ejl =

q∑
k=1

bjkckl.

Ainsi (A×B)× C = (fil)1⩽i⩽n
1⩽l⩽r

où fil =

q∑
k=1

dikckl et A× (B × C) = (gil)1⩽i⩽n
1⩽l⩽r

où gil =

p∑
j=1

aijejl.

Alors, pour tous i, l, fil =

q∑
k=1

 p∑
j=1

aijbjk

 ckl =

q∑
k=1

 p∑
j=1

aijbjkckl

 et gil =

p∑
j=1

aij

(
q∑

k=1

bjkckl

)
=

p∑
j=1

(
q∑

k=1

aijbjkckl

)
.

En intervertissant les signes sommes, on obtient le résultat voulu. □

• Bilinéarité

Proposition 3 Le produit matriciel est bilinéaire :

(A1 +A2)×B = A1 ×B +A2 ×B

(αA)×B = α(A×B)

A× (B1 +B2) = A×B1 +A×B2

A× (αB) = α(A×B)

Démonstration : Faire les calculs. □

• Élément neutre

Définition 2 On appelle matrice identité d’ordre n et on note In la matrice


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

 ∈Mn(K).

On définit le symbole de Kronecker ou delta de Kronecker par δij = 1 si i = j et 0 sinon. Alors In = (δij)1⩽i,j⩽n.

Proposition 4 Soit A ∈Mn,p(K). Alors :

A× Ip = In ×A = A.

Démonstration : A× Ip = (cik)1⩽i⩽n
1⩽k⩽p

où cik =

p∑
j=1

aijδjk = aik et In ×A = (dik)1⩽i⩽n
1⩽k⩽p

où dik =

n∑
j=1

δijajk = aik. □

Définition 3 On appelle matrice scalaire une matrice de la forme λIn où λ ∈ K.
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• Le produit matriciel n’est pas commutatif

Soient A ∈Mn,p(K) et B ∈Mp,q(K) deux matrices. A-t-on AB = BA ?

− Si n ̸= q alors on ne peut pas calculer BA.

− Si n = q mais que n ̸= p, alors AB ∈Mn(K) alors que BA ∈Mp(K) : on ne peut donc pas avoir AB = BA.

− Si n = p = q, alors AB et BA sont de même type, mais elles ne sont pas forcément égales. Par exemple, si

A =

(
0 1
2 3

)
et que B =

(
4 5
6 7

)
, alors AB =

(
6 7
26 31

)
et BA =

(
10 19
14 27

)
.

• Le produit matriciel n’est pas intègre

L’égalité AB = 0 n’implique pas que A = 0 ou B = 0. Par exemple, si A = B =

(
0 1
0 0

)
, alors AB = 0.

• Produit de deux matrices diagonales ou triangulaires

Proposition 5 Le produit de deux matrices diagonales (resp. triangulaires supérieures, resp. triangulaires inférieures)
est une matrice diagonale (resp. triangulaire supérieure, resp. triangulaire inférieure).

Démonstration :

Soient A = (aij)1⩽i,j⩽n et B = (bij)1⩽i,j⩽n deux matrices carrées. Alors AB = (cik)1⩽i,k⩽n où cik =

n∑
j=1

aijbjk.

Supposons que A et B sont diagonales, i.e. que aij = bij = 0 si i ̸= j. Alors, si i ̸= k, on a cik = 0 car, pour tout j, on a aij = 0 ou bjk = 0,
d’où aijbjk = 0. La matrice AB est donc diagonale (noter que si i = k, cii = aiibii).

Supposons maintenant que A et B sont triangulaires supérieures, i.e. que aij = bij = 0 si i > j. Alors, si i > k, on a cik = 0 car, pour

tout j, on a i < j ou j < k, donc aij = 0 ou bjk = 0, d’où aijbjk = 0. La matrice AB est donc triangulaire supérieure (si i = k, on a aussi

cii = aiibii). Le raisonnement est analogue pour les matrices triangulaires inférieures. □

Remarque : On voit que, dans les trois cas, les termes diagonaux du produit sont les produits des termes diagonaux
des matrices de départ.

• Puissances d’une matrice carrée

Définition 4 Soit A ∈ Mn(K). On définit par récurrence les puissances successives de A par A0 = I et, pour tout
n ∈ N, An+1 = An ×A.

Remarques :

1) Le produit matriciel n’étant pas commutatif, (AB)n et AnBn ne sont pas toujours égales.

2) De même, pour calculer (A+B)n, on peut utiliser la formule du binôme de Newton à condition que les matrices A
et B commutent.

Exercice 1 Calculer An pour tout n ∈ N∗ dans chacun des cas suivants :

A =

1 1 1
1 1 1
1 1 1

 ; A =

0 1 0
0 0 1
0 0 0

 ; A =

2 1 0
0 2 1
0 0 2

 ; A =

2 1 1
1 2 1
1 1 2

 .

4 Matrices inversibles

Définition 5 A ∈Mn(K) est inversible s’il existe B ∈Mn(K) telle que :{
A×B = In
B ×A = In

.

On dit alors que B est la matrice inverse de A et on la note A−1.

L’ensemble des matrices inversibles deMn(K) est appelé groupe linéaire d’ordre n sur K et noté GLn(K).

Remarques :

1) Si B existe, elle est unique. En effet, si AB = BA = I et que AC = CA = I, alors BAC = IC = C et
BAC = BI = B donc B = C.

2) On n’écrira jamais
1

A
à la place de A−1.
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3) Si A est inversible, alors A−1 aussi, et (A−1)−1 = A.

4) La matrice identité In est inversible et I−1
n = In car In × In = In.

5) La matrice nulle n’est pas inversible puisque 0 × B = B × 0 = 0 pour toute matrice B. Plus généralement, si
l’une des lignes (resp. l’une des colonnes) de A est nulle, alors A n’est pas inversible. En effet, dans ce cas, pour toute
matrice B, la ligne (resp. la colonne) correspondante de AB (resp. de BA) est nulle aussi donc on ne peut pas avoir
AB = In (resp. BA = In).

6) Si les matrices A et B sont inversibles, alors AB aussi, et (AB)−1 = B−1A−1. En effet, (AB)(B−1A−1) =
A(BB−1)A−1 = AInA

−1 = AA−1 = In, et de même (B−1A−1)(AB) = In.

Proposition 6 Soient A,B ∈Mn(K). Alors AB = In si et seulement si BA = In.

Pour montrer qu’une matrice A est inversible, il suffit donc de trouver B telle que AB = In ou telle que BA = In. Ce
résultat est admis pour l’instant.

5 Matrices élémentaires

Définition 6 Soit (i, j) ∈ {1, . . . , n}×{1, . . . , p}. La matrice élémentaire Eij est la matrice dont tous les coefficients
sont nuls sauf celui d’indice (i, j) qui vaut 1.

Par exemple, si n = 2 et p = 3 on a E11 =

(
1 0 0
0 0 0

)
, E12 =

(
0 1 0
0 0 0

)
, E13 =

(
0 0 1
0 0 0

)
, E21 =

(
0 0 0
1 0 0

)
,

E22 =

(
0 0 0
0 1 0

)
et E23 =

(
0 0 0
0 0 1

)
.

Proposition 7 Toute matrice deMn,p(K) s’écrit de manière unique comme combinaison linéaire de matrices élémentaires.

On dit que la famille (Eij)1⩽i⩽n
1⩽j⩽p

est une base deMn,p(K).

Démonstration :

Toute matrice A = (aij) de Mn,p(K) peut s’écrire sous la forme A =
∑
i,j

aijEij , et si
∑
i,j

λijEij =
∑
i,j

µijEij alors λij = µij pour tout

(i, j) ∈ {1, . . . , n} × {1, . . . , p}. □

Par exemple, toute matrice A = (aij) deM2,3(K) s’écrit de manière unique :(
a11 a12 a13
a21 a22 a23

)
= a11

(
1 0 0
0 0 0

)
+a12

(
0 1 0
0 0 0

)
+a13

(
0 0 1
0 0 0

)
+a21

(
0 0 0
1 0 0

)
+a22

(
0 0 0
0 1 0

)
+a23

(
0 0 0
0 0 1

)
.

Proposition 8 Soient i ∈ {1, . . . , n}, j, k ∈ {1, . . . , p} et l ∈ {1, . . . , q}. On a

EijEkl = δjkEil.

Démonstration : (Faire un schéma)

Toutes les lignes de Eij sont nulles sauf la ie, donc il en est de même pour EijEkl, et toutes les colonnes de Ekl sont nulles sauf la le, donc
il en est de même pour EijEkl.

Ainsi le seul coefficient éventuellement non nul de EijEkl est celui d’indice (i, l). Or ce coefficient est le produit de la ie ligne de Eij (qui
contient un 1 en je position) et de la le colonne de Ekl (qui contient un 1 en ke position). Il est donc égal à 1 si j = k et nul sinon.

Ainsi EijEkl = Eil si j = k et EijEkl = 0 sinon. □

6 Transposée d’une matrice

Définition 7 Soit A ∈ Mn,p(K). La matrice transposée de A est la matrice deMp,n(K) dont les lignes sont les
colonnes de A. On la note AT ou tA.

Si A = (aij)1⩽i⩽n
1⩽j⩽p

, alors AT = (αij)1⩽i⩽p
1⩽j⩽n

où αij = aji.

Exemple : Si A =

(
1 2 3
4 5 6

)
, alors AT =

1 4
2 5
3 6

.

Proposition 9 Soient A,B ∈Mn,p(K) et α, β ∈ K. Alors :

(A+B)T = AT +BT

(αA)T = αAT
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Démonstration : Immédiat. □

Proposition 10 Soient A ∈Mn,p(K) et B ∈Mp,q(K). Alors :

(A×B)T = BT ×AT .

Démonstration :

Soient A = (aij)1⩽i⩽n
1⩽j⩽p

et B = (bjk)1⩽j⩽p
1⩽k⩽q

. Alors AB = (cik)1⩽i⩽n
1⩽k⩽q

où cik =

p∑
j=1

aijbjk, et (AB)T = (γik) 1⩽i⩽q
1⩽k⩽n

où γik = cki =

p∑
j=1

akjbji.

D’autre part AT = (αij)1⩽i⩽p
1⩽j⩽n

où αij = aji et BT = (βjk)1⩽j⩽q
1⩽k⩽p

où βjk = bkj , donc BT × AT = (δik) 1⩽i⩽q
1⩽k⩽n

avec δik =

p∑
j=1

βijαjk =

p∑
j=1

bjiakj = γik. On a donc (A×B)T = BT ×AT . □

Proposition 11 Soit A ∈Mn(K). Si A est inversible, alors AT aussi, et :(
AT

)−1
=

(
A−1

)T
.

Démonstration : A×A−1 = A−1 ×A = I, donc (A×A−1)T = (A−1 ×A)T = IT , soit (A−1)T ×AT = AT × (A−1)T = I. □

7 Matrices symétriques et antisymétriques

Définition 8 Soit A ∈ Mn(K). On dit que A est symétrique si AT = A. On dit que A est antisymétrique si
AT = −A.

On notera Sn(K) l’ensemble des matrices symétriques et An(K) l’ensemble des matrices antisymétriques.

Exemple : A =

1 3 2
3 0 4
2 4 7

 est symétrique, B =

 0 3 −2
−3 0 4
2 −4 0

 est antisymétrique.

Remarques :

1) A = (aij)1⩽i,j⩽n est symétrique si et seulement si aij = aji pour tous i, j ∈ {1, . . . , n}. Elle est antisymétrique si et
seulement si aij = −aji pour tous i, j ∈ {1, . . . , n}.

2) Une matrice antisymétrique n’a que des 0 sur sa diagonale (car aii = −aii pour tout i ∈ {1, . . . , n}).

Proposition 12 Toute matrice carrée se décompose de manière unique comme somme d’une matrice symétrique et
d’une matrice antisymétrique.

Démonstration :

On raisonne par analyse-synthèse. Soit M ∈ Mn(K).

Analyse : Supposons que M = S + A où S est symétrique et A antisymétrique. Alors MT = ST + AT = S − A, donc en additionnant et
soustrayant on obtient S = 1

2
(M +MT ) et A = 1

2
(M −MT ).

Synthèse : Soient S = 1
2
(M +MT ) et A = 1

2
(M −MT ). Alors ST = 1

2
(MT +M) = S, donc S est symétrique, et AT = 1

2
(MT −M) = −A,

donc A est antisymétrique. De plus on a immédiatement S +A = M . □

Exemple : Pour M =

(
1 2
3 4

)
, on obtient S =

(
1 5

2
5
2 4

)
et A =

(
0 − 1

2
1
2 0

)
.

II Systèmes linéaires

1 Définitions

Définition 9 Un système linéaire de n équations à p inconnues à coefficients dans K est un système
d’équations de la forme :

(Σ)


a11x1 + . . .+ a1pxp = b1
a21x1 + . . .+ a2pxp = b2
...
an1x1 + . . .+ anpxp = bn

où les aij et les bi sont des éléments de K donnés et les xj sont les inconnues.

Une solution de (Σ) est un p-uplet (x1, . . . , xp) ∈ Kp pour lequel toutes les égalités sont vraies. On dit que le système
est compatible s’il a au moins une solution, sinon on dit qu’il est incompatible.

On dit que le système est homogène ou sans second membre si b1 = . . . = bn = 0.
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Posons A =

a11 . . . a1p
...

...
an1 . . . anp

 ∈Mn,p(K), B =

b1
...
bn

 et X =

x1

...
xp

. En calculant AX on voit que :

(x1, . . . , xp) solution de (Σ)⇔ AX = B.

On dit que A est la matrice de (Σ).

Proposition 13 Soit (Σ) un système linéaire. Soit (Σ0) le système homogène associé. Si (Σ) possède une solution,
alors on obtient toutes les solutions de (Σ) en additionnant à cette solution les solutions de (Σ0).

Sous forme matricielle : si le système AX = B est compatible, alors ses solutions sont les X0 + Y , où X0 est une
solution particulière et où Y parcourt l’ensemble des solutions du système homogène associé.

Solution générale de (Σ) = solution particulière de (Σ) + solution générale de (Σ0)

Démonstration :

On considère le système sous forme matricielle AX = B avec A ∈ Mn,p(K) et B ∈ Mn,1(K). Soit X0 ∈ Mp,1(K) telle que AX0 = B.
Alors, pour tout X ∈ Mp,1(K), on a :

AX = B ⇔ AX = AX0 ⇔ A(X −X0) = 0 ⇔ X −X0 solution de (Σ0).

Par conséquent, X est solution de (Σ) si et seulement s’il existe une solution Y de (Σ0) telle que X = X0 + Y . □

Remarques :

1) Le système AX = B est compatible si et seulement si B est combinaison linéaire des colonnes de A.

2) Un système homogène est toujours compatible puisque (0, . . . , 0) est solution.

2 Opérations élémentaires

Définition 10 Les opérations élémentaires sur les lignes d’un système linéaire ou d’une matrice sont :

(i) l’échange de deux lignes Li et Lj (noté Li ↔ Lj),

(ii) la multiplication d’une ligne Li par un scalaire non nul λ (notée Li ← λLi),

(iii) l’ajout à une ligne Li du produit d’une autre ligne Lj (avec j ̸= i) par un scalaire λ (noté Li ← Li + λLj).

Proposition 14 Si on applique une de ces opérations à un système, l’ensemble de ses solutions ne change pas.

Démonstration :

Il suffit de voir que toutes ces opérations sont réversibles : si on a échangé deux lignes d’un système, il suffit de les échanger à nouveau

pour revenir au système initial. Si on a multiplié une ligne par λ ̸= 0, il suffit de la multiplier par 1/λ. Si on a ajouté λLj à la ligne Li, il

suffit de lui retrancher λLj . □

Définition 11 Les matrices de transposition (resp. de dilatation, resp. de transvection) sont les matrices de
formes respectives :

Tij =



1
. . .

0 1
. . .

1 0
. . .

1


Di,λ =



1
. . .

1
λ

1
. . .

1


Ti,j,λ =



1
. . .

1
. . .

λ 1
. . .

1


où i ̸= j et λ ̸= 0 dans Di,λ.

On obtient la matrice Tij en échangeant les ie et je lignes de la matrice identité In, on obtient la matrice Di,λ en
remplaçant le 1 de la ie ligne de In par λ, et on obtient la matrice Ti,j,λ à partir de In en remplaçant le 0 situé à
l’intersection de la ie ligne et de la je colonne par λ.

Proposition 15 Soit A ∈Mn,p(K).

(i) Échanger les lignes Li et Lj de A revient à la multiplier à gauche par Tij.

(ii) Multiplier la ligne Li de A par λ revient à la multiplier à gauche par Di,λ.

(iii) Ajouter à la ligne Li de A le produit de la ligne Lj par λ revient à la multiplier à gauche par Ti,j,λ.
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Démonstration :

Soit A = (alm) 1⩽l⩽n
1⩽m⩽p

.

(i) Soient i, j ∈ {1, . . . , n} avec i ̸= j. On a Tij = (tkl)1⩽k,l⩽n où tkk = 1 si k ̸= i, j, tij = tji = 1 et tkl = 0 sinon.

Alors TijA = (bkm)1⩽k⩽n
1⩽m⩽p

avec bkm =

n∑
l=1

tklalm. Si k = i, le seul terme non nul de cette somme est tijajm = ajm. De même, si k = j, le

seul terme non nul est tjiaim = aim. Sinon, le seul terme non nul est tkkakm = akm. Le résultat s’ensuit.

(ii) Soient i ∈ {1, . . . , n} et λ ∈ K. On a Di,λ = (dkl)1⩽k,l⩽n où dkk = 1 si k ̸= i, j, dii = λ et dkl = 0 sinon.

Alors Di,λA = (bkm)1⩽k⩽n
1⩽m⩽p

avec bkm =

n∑
l=1

dklalm. Si k = i, le seul terme non nul de cette somme est diiaim = λaim. Sinon, le seul terme

non nul est dkkakm = akm.

(iii) Soient i, j ∈ {1, . . . , n} avec i ̸= j et λ ∈ K. On a Ti,j,λ = (tkl)1⩽k,l⩽n où tkk = 1 pour tout k, tij = λ et tkl = 0 sinon.

Alors Ti,j,λA = (bkm)1⩽k⩽n
1⩽m⩽p

avec bkm =

n∑
l=1

tklalm. Si k = i, la somme devient tiiaim + tijajm = aim + λajm. Sinon, le seul terme non

nul est tkkakm = akm. □

Corollaire 16 Les matrices Tij, Di,λ (avec λ ̸= 0) et Ti,j,λ sont inversibles et leurs inverses sont respectivement Tij,
Di,1/λ et Ti,j,−λ.

Démonstration : D’après la proposition précedente on a T 2
ij = I, Di,λDi,1/λ = Di,1/λDi,λ = I et Ti,j,λTi,j,−λ = Ti,j,−λTi,j,λ = I. □

Remarque : On peut définir les opérations élémentaires sur les colonnes d’une matrice : échange de deux colonnes,
multiplication par un scalaire non nul, ajout à une colonne d’un multiple d’une autre colonne. On a alors des résultats
analogues à ceux concernant les lignes : les opérations Ci ↔ Cj , Ci ← λCi et Ci ← Ci + λCj se traduisent matriciel-
lement par la multiplication à droite par Tij , Di,λ et Tj,i,λ respectivement.

3 Méthode pratique de résolution
La méthode générale pour résoudre un système linéaire est la méthode du pivot de Gauss (inutile d’apprendre par
cœur l’algorithme suivant, il faut simplement savoir l’appliquer en pratique).

Soit A = (aij)1⩽i⩽n
1⩽j⩽p

∈Mn,p(K) la matrice du système.

1. On pose l = 1.

2. Pour k allant de 1 à n− 1 :

− On commence par chercher le pivot. Soit A′ = (aij)k⩽i⩽n
l⩽j⩽p

. Si A′ est nulle, on arrête l’algorithme. Sinon, soit

Cj la première colonne non nulle de A′. On choisit dans Cj un élément non nul aij qui sera le pivot. On échange si
nécessaire les lignes Lk et Li du système afin que le pivot soit en position (k, j).

− On élimine les coefficients situés sous le pivot, en appliquant au système l’opération élémentaire Li ← Li−
aij
akj

Lk,

pour i compris entre k + 1 et n.

− On pose l = j + 1.

On obtient ainsi un système échelonné, i.e. tel que :

− si le premier membre d’une ligne est nul, les premiers membres des lignes suivantes le sont aussi,

− à partir de la deuxième ligne, dans chaque ligne non nulle, le premier coefficient non nul à partir de la gauche
(le pivot) est situé à droite du premier coefficient non nul de la ligne précédente.

Par exemple, le système (Σ) :

 2x− 5y − 3z + 7t = 2
4z − 3t = −7

2t = 1
est échelonné. Les pivots sont en gras.

Les inconnues principales d’un système linéaire échelonné sont celles dont un des coefficients est un pivot. Les
inconnues non principales sont appelées inconnues secondaires ou paramètres.

Dans l’exemple ci-dessus, les inconnues principales sont x, z et t, alors que y est une inconnue secondaire.

La résolution d’un système linéaire échelonné est très simple. Le système est compatible si et seulement si, pour toutes
les équations dont le premier membre est nul, le second membre est nul également. Ensuite, la résolution se fait en
exprimant les inconnues principales en fonctions des inconnues secondaires, en commençant par la dernière équation
non nulle et en remontant dans les équations précédentes.
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Exemple : Le système (Σ) ci-dessus est compatible et on a :

(Σ)⇔

 2x− 5y − 3z + 7t = 2
4z − 3t = −7

t = 1/2
⇔

 2x− 5y − 3z + 7t = 2
z = −11/8
t = 1/2

⇔

 x = −45/16 + (5/2)y
z = −11/8
t = 1/2

L’ensemble des solutions de (Σ) est donc {(−45/16 + (5/2)y, y,−11/8, 1/2) | y ∈ R}.

Exercice 2 Résoudre les systèmes suivants :

{
2x+ 5y = 3
4x− 3y = 1

;

 2x+ y + z = 3
x− y − z = 1
3x− y + 2z = 4

;

 x− 4y − z = 3
2x− y − z = 1
3x+ 2y − z = 5

;

 x− 4y − z = 3
2x− y − z = 1
3x+ 2y − z = −1

4 Application : calcul de l’inverse d’une matrice

• Calcul de A−1 par résolution du système AX = Y

Proposition 17 Soit A ∈Mn(K). Les propositions suivantes sont équivalentes :

(i) A est inversible.

(ii) Pour tout Y ∈Mn,1(K), le système AX = Y a une solution unique.

(iii) Pour tout Y ∈Mn,1(K), le système AX = Y a au moins une solution.

Démonstration :

(i) ⇒ (ii) : Si A est inversible, alors, pour tout Y ∈ Mn,1(K), on a : AX = Y ⇔ X = A−1Y .

(ii) ⇒ (iii) : Immédiat.

(iii) ⇒ (i) : Supposons que, pour tout Y ∈ Mn,1(K), le système AX = Y a au moins une solution. Considérons, pour i ∈ {1, . . . , n}, la
matrice Yi ∈ Mn,1(K) ayant un 1 dans la ie ligne et des 0 ailleurs. Soit Xi une solution du système AX = Yi. Alors la matrice B ∈ Mn(K)

dont les colonnes sont X1, . . . , Xn vérifie AB = In (cf remarque 1 après la définition du produit matriciel). D’après la proposition 6, on en

déduit que A est inversible. □

Ainsi, pour montrer qu’une matrice carrée A est inversible et déterminer A−1, il suffit de résoudre le système linéaire

AX = Y (où X =
(
x1 x2 . . . xn

)T
et Y =

(
y1 y2 . . . yn

)T
) : si, pour tout Y , ce système admet une solution

(qui est donc unique), alors A est inversible et l’équivalence AX = Y ⇔ X = A−1Y permet d’obtenir A−1.

Exemple : Soit A =

(
3 −1
5 −2

)
. Soient X =

(
x1

x2

)
et Y =

(
y1
y2

)
. Alors :

AX = Y ⇔
{

3x1 − x2 = y1
5x1 − 2x2 = y2

⇔
{

x2 = 3x1 − y1
−x1 + 2y1 = y2

⇔
{

x2 = 5y1 − 3y2
x1 = 2y1 − y2

⇔
{

x1 = 2y1 − y2
x2 = 5y1 − 3y2

.

Le système admet une solution unique, donc la matrice A est inversible. De plus le dernier système correspond à

l’égalité X = A−1Y , donc A−1 =

(
2 −1
5 −3

)
. On peut vérifier que l’on a bien

(
3 −1
5 −2

)
×

(
2 −1
5 −3

)
=

(
1 0
0 1

)
= I2.

Exercice 3 Les matrices A =

 1 2 2
−1 3 1
2 −2 1

 et B =

 2 −1 −2
−3 5 2
−2 −6 4

 sont-elles inversibles ? Si oui, calculer leurs

inverses.

• Calcul de A−1 par la méthode du pivot

Proposition 18 Soient A et M deux matrices carrées. On suppose que A est inversible. Alors :

M inversible⇔ AM inversible⇔MA inversible.

Démonstration :

On a vu que le produit de deux matrices inversibles est inversible, donc si M est inversible alors AM et MA aussi. Réciproquement, si AM

est inversible, alors M = A−1(AM) aussi, et si MA est inversible, alors M = (MA)A−1 aussi. □

Proposition 19 Les opérations élémentaires sur les lignes ou les colonnes d’une matrice ne modifient pas son inver-
sibilité.
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Démonstration :

On a vu qu’appliquer une telle opération élémentaire à une matrice revient à la multiplier à gauche ou à droite par une matrice de

transposition, de dilatation ou de transvection. Or ces matrices sont inversibles. La proposition précédente permet de conclure. □

Proposition 20 A ∈ Mn(K) est inversible si et seulement si on peut la transformer en In par une succession
d’opérations élémentaires.

Démonstration :

On admet le sens direct qui est une conséquence de l’algorithme du pivot de Gauss. Le sens réciproque est une conséquence immédiate de

la proposition précédente. □

Ainsi, pour déterminer si une matrice A est inversible ou non, on peut lui appliquer des opérations élémentaires sur
les lignes jusqu’à ce qu’on obtienne soit In, soit une matrice clairement non inversible. De plus, si In = Er . . . E1A
où les Ei sont des matrices de transposition, de dilatation ou de transvection, alors A−1 = Er . . . E1In : pour obtenir
A−1 il suffit d’appliquer à la matrice In les mêmes opérations élémentaires que celles utilisées pour passer de A à In.

Exemple : Reprenons la matrice A =

(
3 −1
5 −2

)
. Alors :

(
3 −1 1 0
5 −2 0 1

)
L1 ← (1/3)L1 ∼L

(
1 −1/3 1/3 0
5 −2 0 1

)
L2 ← L2 − 5L1

∼L

(
1 −1/3 1/3 0
0 −1/3 −5/3 1

)
L2 ← −3L2

∼L

(
1 −1/3 1/3 0
0 1 5 −3

)
L1 ← L1 + (1/3)L2

∼L

(
1 0 2 −1
0 1 5 −3

)

On conclut que A est inversible et que A−1 =

(
2 −1
5 −3

)
.

Exercice 4 Appliquer cette méthode aux matrices de l’exercice précédent.
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