
Corrigé DS3

Exercice 1 : Mouvement dans un champ magnétique
1. On évalue en ordres de grandeur le poids et la force magnétique : P = mg ∼ 10−29 N et
Fm =

∥∥−e⃗v∧ B⃗
∥∥∼ evB0 ∼ 10−17 N.

On a Fm/P ∼ 1012 ; le poids de l’électron est négligeable devant la force magnétique.

2. La force magnétique ne travaille pas car Pmag = F⃗mag · v⃗ = −e(⃗v∧ B⃗) · v⃗ = 0. On applique

le théorème de la puissance cinétique à l’électron : dEc
dt = Pmag = 0. L’énergie cinétique se

conserve donc le mouvement est uniforme.

3. Avec une vitesse initiale colinéaire à u⃗z (donc à B⃗) la force magnétique est nulle. L’électron
a un mouvement rectiligne uniforme parallèlement au champ magnétique (selon u⃗z)

4.a) On applique le principe fondamental de la dynamique à l’électron dans le référentiel ter-
restre supposé galiléen : m d⃗v

dt =−e⃗v∧ B⃗. On projette dans la base cartésienne :
dvx
dt =−eB0

m vy (Ex)

dvy
dt =

eB0
m vx (Ey)

dvz
dt = 0 (Ez)

4.b) En intégrant deux fois l’équation (Ez) avec les conditions initiales vz(0) = 0 et z(0) = 0 on
trouve z(t) = 0 ∀t . La trajectoire est située dans le plan (Oxy).

4.b) On dérive l’équation (Ex) par rapport au temps :

d2vx
dt2 =−eB0

m
dvy
dt =−

(
eB0
m

)2
vx ⇐⇒ d2vx

dt2 +
(

eB0
m

)2
vx = 0

On dérive l’équation (Ey) par rapport au temps :

d2vy
dt2 =

eB0
m

dvx
dt =−

(
eB0
m

)2
vy ⇐⇒ d2vy

dt2 +
(

eB0
m

)2
vy = 0

Les vitesses vx(t) et vy(t) sont solutions de la même équation différentielle d’oscillateur har-

monique. On identifie la pulsation propre : ω0 =
eB0
m .

On intègre à nouveau pour obtenir x(t) et y(t), avec les conditions initiales x(0) = 0 et y(0) = 0.
On trouve :

x(t) = mv0
eB0

sin
(

eB0
m t

)
et y(t) = mv0

eB0

(
1− cos

(
eB0
m t

))

On élimine le temps grâce à l’identité cos2+sin2 = 1 : x2 +
(

y− mv0
eB0

)2
=
(

mv0
eB0

)2
. Il s’agit

de l’équation cartésienne d’un cercle de rayon Rc =
mv0
eB0

et de centre C(0,Rc). D’après les

expressions de x(t) et y(t) la pulsation du mouvement est ωc = eB0/m donc la période vaut

Tc =
2π

ωc
= 2πm

eB0
.

5.a) On exprime l’énergie cinétique en fonction du rayon : Ecin = 1
2 mv2 =

e2B2
0

2m R2
c . On dérive

cette expression :

dEcin
dRc

=
e2B2

0
m Rc ⇐⇒ dEcin =

e2B2
0

m RcdRc

5.b) On applique le théorème de la puissance cinétique à l’électron :

dEcin
dt =−P ⇐⇒ e2B2

0
m Rc

dRc
dt =− e2

6πε0c3

∥∥∥ d⃗v
dt

∥∥∥2

On suppose que le mouvement reste quasiment circulaire uniforme donc l’accélération en norme

vaut :
∥∥∥ d⃗v

dt

∥∥∥≃ v2

Rc
=

e2B2
0

m2 Rc. On vérifie alors que le théorème de la puissance cinétique conduit

à l’équation différentielle suivante : dRc
dt +

e4B2
0

6πε0m3c3 Rc = 0 .

5.c) On reconnaît l’équation caractéristique d’un régime transitoire du premier ordre de con-

stante de temps τ =
6πε0m3c3

e4B2
0

. Sachant que m = eB0/ωc on a : τ =
6πε0c3B0

eω3
c

. On résout cette

équation différentielle avec la condition initiale Rc(0) =
mv0
eB0

: Rc(t) =
mv0
eB0

e−t/τ .

À cause de l’énergie perdue par le rayonnement qu’il produit, l’électron suit une trajectoire en
forme de spirale convergente et finit par s’arrêter en O dans la limite t −→+∞.

Exercice 2 : Mouvement d’une luge
1. Par définition : tanα = 10

100 = 0,1 ⇐⇒ α = arctan(0,1) = 5,7◦ .

α

M

g⃗

P⃗

N⃗

x

y

O

2. On définit un repère (Oxy) dont l’origine est située à la fin de
la phase de poussée. La luge est soumise à son poids P⃗ et à la
réaction normale N⃗ de la piste (les frottements sont négligés). On
applique le principe fondamental de la dynamique à la luge dans le
référentiel lié à la piste supposé galiléen : ma⃗ = P⃗+ N⃗. On projette
dans la base (⃗ux, u⃗y) :{

mẍ = mgsinα (Ex)

0 =−mgcosα +N (Ey)



L’équation (Ex) donne l’accélération de la luge : ẍ = gsinα = 1,0m · s−2 .

3. On intègre (Ex), avec la conditions initiales ẋ(0) = v0 : ẋ(t) = gsin(α)t + v0 .

La luge atteint la vitesse va lorsque : va = gsin(α)ta + v0 ⇐⇒ ta =
va−v0
gsinα

= 25s .

4. On intègre à nouveau pour obtenir la position.

Avec la condition initiale x(0) = 0 on trouve x(t) = 1
2 gsin(α)t2 + v0t.

La distance parcourue par la luge avant d’atteindre la vitesse va vaut : La = x(ta) = 440m .

5. On applique le théorème de l’énergie cinétique à la luge entre O et le point A où la vitesse
atteint va : ∆O→AEc =W (P⃗)+W (N⃗).

• La variation d’énergie cinétique vaut : ∆O→AEc =
1
2 mv2

a −
1
2 mv2

0.

• Le travail du poids vaut W (P⃗) = mgh avec h = La sinα le dénivelé entre O et A.
• La réaction normale ne travaille pas car elle est orthogonale au mouvement : W (N⃗) = 0.

On conclut que : 1
2 m(v2

a − v2
0) = mgLa sinα ⇐⇒ La =

v2
a−v2

0
2gsinα

= 440m . On retrouve bien le

résultat de la question 4.

6. Le mouvement de la luge est circulaire et uniforme donc a⃗ =−V 2

r u⃗r . Un vecteur accéléra-

tion est toujours tourné vers l’intérieur de la trajectoire, on comprend que a⃗ peut être orienté
selon −u⃗r.

β

u⃗r

u⃗z
n⃗

t⃗

g⃗
N⃗

T⃗

P⃗

β

β

7. On représente les forces sur le schéma ci-contre.
On applique le principe fondamental de la dynamique à la luge :
ma⃗ = P⃗+ T⃗ + N⃗. On le projette dans la base (⃗n,⃗ t) :

mV 2

r sinβ = N −mgcosβ

mV 2

r cosβ = T +mgsinβ

On en déduit que N = mgcosβ +mV 2

r sinβ et T = mV 2

r cosβ −mgsinβ .

8. La réaction tangentielle est nulle pour la vitesse Vc telle que :

m
V 2

c
r cosβ = mgsinβ ⇐⇒ Vc =

√
gr tanβ

Dans le cas général on peut écrire : T = mV 2

r cosβ −m
V 2

c
r cosβ ⇐⇒ T = m

V 2−V 2
c

r cosβ .

9. Si V >Vc alors T > 0. la condition de non-dérapage s’écrit :

mV 2

r cosβ −mgsinβ ≤ f
(

mgcosβ +mV 2

r sinβ

)
Après simplifications on trouve : V 2(cosβ − f sinβ )≤ gr(sinβ + f cosβ ) .

10. La condition établie à la question précédente est vérifiée quelle que soit la vitesse V si :

cosβ − f sinβ ≤ 0 ⇐⇒ tanβ ≥ 1
f ⇐⇒ β ≥ arctan

(
1
f

)
= 68◦

11. Si cosβ − f sinβ ≥ 0 alors la condition de non-dérapage impose que la vitesse vérifie :

V ≤
√

gr sinβ+ f cosβ

cosβ− f sinβ

Si la vitesse est trop grande alors la luge peut déraper et percuter la bordure extérieure de la piste.
Sachant qu’elle descend à grande vitesse, cela représente un danger sérieux pour le lugeur.

12. La luge ne dérape pas si son mouvement est circulaire uniforme, c’est-à-dire si a⃗ =−V 2

r u⃗r.
On projette le PFD dans la base (⃗ur, u⃗z), dans le cas d’absence de frottement latéral (T = 0) :−mV 2

r =−N sinβ

0 = N cosβ −mg

Le virage s’effectue sans dérapage à condition que N =
mg

cosβ
et :

V =
√

Nr
m sinβ =

√
gr tanβ =Vc

En l’absence de frottement latéral le virage ne s’effectue sans dérapage qu’à condition que la
vitesse soit exactement égale à Vc.

13. La luge est soumise à son poids (force conservative) et à la réaction normale de la piste.
On applique le théorème de l’énergie mécanique à la luge entre la ligne d’arrivée (point A) et la
position d’arrêt (point B) : ∆A→BE = W (N⃗) = 0. L’énergie mécanique se conserve au cours
de la décélération.
On note Ep = mgz l’énergie potentielle de pesanteur, avec z l’altitude de la luge. On choisit
z = 0 au niveau de la ligne d’arrivée. La conservation de l’énergie mécanique donne :

E(A) = E(B) ⇐⇒ 1
2 mv2

a = mgzB ⇐⇒ zB =
v2

a
2g

On en déduit la distance de freinage : L f =
zB

sinα
=

v2
a

2gsinα
= 452m .

Une zone de freinage d’une telle longueur n’est pas envisageable en pratique. Il est nécessaire
de trouver un moyen de freiner plus efficacement la luge.


