Corrigé DS3

Exercice 1 : Mouvement dans un champ magnétique
1. On évalue en ordres de grandeur le poids et la force magnétique : P = mg ~ 1072°N et

F, = H—eﬁ/\ﬁ“ ~ evBy ~ 1017 N.

On élimine le temps grace a I’identité cos? +sin®> = 1 :

de I’équation cartésienne d’un cercle de rayon
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et de centre C(0,R.). D’apres les

expressions de x(¢) et y(¢) la pulsation du mouvement est @, = eBy/m donc la période vaut
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On a F,,/P ~ 10'? ; le poids de ’électron est négligeable devant la force magnétique.

2. La force magnétique ne travaille pas car P, = ﬁmag ¥ = —e(VAB)-¥=0. On applique

le théoreme de la puissance cinétique & 1’électron :

conserve donc le mouvement est uniforme.

ngmag:

0. L’énergie cinétique se

3. Avec une vitesse initiale colinéaire a i, (donc a B) la force magnétique est nulle. L’électron
a un mouvement rectiligne uniforme parallelement au champ magnétique (selon ;)

4.a) On applique le principe fondamental de la dynamique a 1’électron dans le référentiel ter-

restre supposé galiléen : m% = —¢¥AB. On projette dans la base cartésienne :
% = 6510 vy (Ex)
% = % (E>)
&= _o (E.)

4.b) En intégrant deux fois I’équation (E;) avec les conditions initiales v,(0) =

trouve | z(7)

4.b) On dérive I’équation (E,) par rapport au temps :
d? eBg dv eBy\? d? eBy\?
=G = (W) = [ () =0

On dérive I’équation (
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Les vitesses vy(t) et vy(r) sont solutions de la méme équation différentielle d’oscillateur har-

monique. On identifie

On integre & nouveau pour obtenir x(¢) et y(z), avec les conditions initiales x(0) =

On trouve :

la pulsation propre :
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x(t) = % sin (eBO t) et
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5.a) On exprime 1’énergie cinétique en fonction du rayon : E, = %mv2 = —2m° R%. On dérive
cette expression :
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5.b) On applique le théoréme de la puissance cinétique a I’électron :
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e P =

av ||

dt

¢ dt T 6meyc3 ’

On suppose que le mouvement reste quasiment circulaire uniforme donc I’accélération en norme
2 B2

vaut : ‘ g‘; R~ —2R... On vérifie alors que le théoréme de la puissance cinétique conduit
e . dRc e*B}
a I’équation différentielle suivante : + ﬁR =0\
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5.¢) On reconnait I’équation caractéristique d’un régime transitoire du premier ordre de con-
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stante de temps T = %. Sachant que m = eBj/@. ona: % On résout cette
0
équation différentielle avec la condition initiale R.(0) = % SR(2) = z%ge*’/ Tl

A cause de I’énergie perdue par le rayonnement qu’il produit, 1’électron suit une trajectoire en
forme de spirale convergente et finit par s’arréter en O dans la limite 1 — oo,

Exercice 2 : Mouvement d’une luge

1. Par définition : tanot = 5 = 0,1 <= ]a = arctan(0,1) = 5,7° |

2. On définit un repere (Oxy) dont I’origine est située a la fin de Y
la phase de pouss_ée. La luge est soumise a son poids Petala l g
réaction normale N de la piste (les frottements sont négligés). On
applique le principe fondamental de la dynamique a la luge dans le .
référentiel lié a la piste supposé galiléen : ma = P+N. On projette N
dans la base (iiy, ily) :
mi =mgsina (Ex) /\\
0=—mgcosa+N (Ey) N



L’équation (E,) donne I’accélération de la luge : ‘x =gsinot=1,0m- 52 ‘

3. On integre (Ey), avec la conditions initiales %(0) = vy : ‘x(t) = gsin(a)t +vo ‘

La luge atteint la vitesse v, lorsque : v, = gsin(Q)t, +vy < |1, = ;"8;1‘}3 =25s|

4. On integre a nouveau pour obtenir la position.

Avec la condition initiale x(0) = 0 on trouve x(7) = %g sin(@)t? 4+ vot.

La distance parcourue par la luge avant d’atteindre la vitesse v, vaut : | L, = x(t,) = 440m ‘

5. On applique le théorénLe de l’égergie cinétique a la luge entre O et le point A ol la vitesse
atteint v, : Ao aE. = W(P)+W(N).

e La variation d’énergie cinétique vaut : Ag_oE, = %mvﬁ - %mv(z).

e Le travail du poids vaut W(ﬁ) =mgh avec h = L;sin ¢ le dénivelé entre O et A.

e La réaction normale ne travaille pas car elle est orthogonale au mouvement : W(]V )=0.
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On conclut que : 3m(v; —vy) = mglysina <= L, = dgsing = 440m |. On retrouve bien le
résultat de la question 4.
. . . - V2., 4
6. Le mouvement de la luge est circulaire et uniforme donc | @ = — -, | Un vecteur accéléra-

tion est toujours tourné vers I’intérieur de la trajectoire, on comprend que d peut étre orienté
selon —ii,.

7. On représente les forces sur le schéma ci-contre.

On applique le principe fondamental de la dynamique a la luge :
md = P+T +N. On le projette dans la base (7,7) :

V2.
m-=—sinff =N —mgcosf§

v2 .
m=r-cosf3 =T +mgsinfs

2 2
On en déduit que | N = mgcos 8 +mv7sinﬁ et T:mVTCOSﬁ—mgsinﬁ .

8. La réaction tangentielle est nulle pour la vitesse V, telle que :

V2 .
m—-cosff =mgsinfi < |V, =/grtanff

s . V2 V2 v2i-v2
Dans le cas général on peut écrire : T =m =~ cosf} — m-:- cosff — m——=

~
I

cosf |

9.SiV >V, alors T > 0. la condition de non-dérapage s’écrit :

V2 . V2.
m=—cosf3 —mgsin B < f | mgcos +m=-sinff

Apres simplifications on trouve : | V2(cos B — fsin) < gr(sinff + fcosB) |

10. La condition établie & la question précédente est vérifiée quelle que soit la vitesse V si :

cosf — fsinf <0 <= tanf zjlf —|B 2arctan(%) s

11. Si cos B — fsin B > 0 alors la condition de non-dérapage impose que la vitesse vérifie :

sin B+ f cos 8
Vs \/ 8" cosB—fsin

Si la vitesse est trop grande alors la luge peut déraper et percuter la bordure extérieure de la piste.
Sachant qu’elle descend a grande vitesse, cela représente un danger sérieux pour le lugeur.
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12. La luge ne dérape pas si son mouvement est circulaire uniforme, c’est-a-dire si d = — V7ur.
On projette le PFD dans la base (i, i), dans le cas d’absence de frottement latéral (T =0) :

v: .
—m-=— = —Nsinf§
0=Ncosf —mg

mg
cosf3

V= \/%sinﬁ =/grtanf3 =V,

En I’absence de frottement latéral le virage ne s’effectue sans dérapage qu’a condition que la
vitesse soit exactement égale a V...

Le virage s’effectue sans dérapage a condition que N = et:

13. La luge est soumise a son poids (force conservative) et a la réaction normale de la piste.
On applique le théoreme de 1’énergie mécanique a la luge entre la ligne d’arrivée (point A) et la
position d’arrét (point B) : A4_,zE = W(N) = 0. L’énergie mécanique se conserve au cours
de la décélération.

On note E, = mgz I’énergie potentielle de pesanteur, avec z Ialtitude de la luge. On choisit
z =0 au niveau de la ligne d’arrivée. La conservation de 1’énergie mécanique donne :

2
E(A) =E(B) +— %mvﬁ =mgzp < 5= ;—Z,

2

On en déduit la distance de freinage : | Ly = SiZnBa =75 g:i“n o

=452m|

Une zone de freinage d’une telle longueur n’est pas envisageable en pratique. Il est nécessaire
de trouver un moyen de freiner plus efficacement la luge.



