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DS de physique n°3

Durée : 3h

L’usage de la calculatrice est autorisé. La copie doit étre propre, lisible, sans faute d’orthographe. Les pages doivent
étre numérotées et les résultats soulignés ou encadrés. Un résultat donné sans justification, a moins que I’énoncé
le précise, est considéré comme faux. Les valeurs numériques doivent étre accompagnées de leur unité. Le devoir

comporte 2 exercices indépendants.

Exercice 1 : Mouvement dans un champ magnétique

Dans le référentiel terrestre supposé galiléen, on considere un électron de masse m pénétrant en O (origine d’un repére
cartésien Oxyz) dans une zone de champ magnétique By = Byii, stationnaire et uniforme (By > 0).

1. Le poids a-t-il une influence sur la dynamique de I’électron ? On attend un argument qualitatif fondé sur un calcul
d’ordre de grandeur. On considére un champ magnétique B ~ 107> T et une vitesse v ~ 10’ m-s ™.

2. Montrer que le mouvement de I’électron est uniforme dans la zone magnétique.
3. On suppose que la vitesse initiale de 1’€lectron s’écrit Vi) = vgui,. Décrire le mouvement de I’électron.

4. On suppose désormais que 1’électron pénetre a r = 0 dans cette méme zone de champ magnétique avec une vitesse

initiale Vi = voii, (vo > 0). On note V = vyii, + vyiiy +Vv;ii, le vecteur vitesse a un instant quelconque. On pose @, = %

a) Etablir les équations différentielles du premier ordre vérifiées par vy(t), vy(t) et v,(t).
b) Déterminer z(¢) a tout instant # > 0.

¢) Déterminer x(¢) et y(¢) a tout instant # > 0 puis montrer que la trajectoire de 1’électron est circulaire. Préciser quel
le centre C, le rayon R, et la période T, de la trajectoire.

5. Un électron accéléré non relativiste perd de I’énergie en rayonnant a un instant donné une puissance électromag-
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6reec || ar avec e la charge élémentaire et ¢ la célérité de la lumiere dans le vide. Sous I’effet
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de la puissance rayonnée la vitesse ||V|| et le rayon R, de la trajectoire deviennent variables. On étudie une portion
infinitésimale de la trajectoire de 1’électron au cours de laquelle le rayon varie de dR.. On suppose que le rayon R,
varie suffisamment lentement pour que les expressions obtenues a la question 4.c) soient toujours valables en premiere

—

nétique & =

approximation.

a) Exprimer la variation de 1’énergie cinétique dE.j, de 1’électron en fonction de dR,.

Lo e dE
Indication : On pourra commencer par calculer la dérivée —g.
b) En déduire, a ’aide du théoréme de la puissance cinétique, que R, (¢) est solution de 1’équation différentielle :
dR, . 6433 0
dr  6mem3c3 ¢

¢) Résoudre cette équation. Quelle est I’allure de la trajectoire ?



Exercice 2 : Mouvement d’une luge

La Iuge est devenue un sport olympique en 1964 a Innsbruck (Autriche). Le lugeur est allongé sur le dos, les pieds en
avant, sur la luge qui glisse sur une piste de glace. Pour freiner, le lugeur ne peut compter que sur ses pieds car la luge
ne comporte pas de frein. Les spécialistes peuvent atteindre des vitesses supérieures a 100 km/h.

Pour la modélisation, on assimile I’ensemble {luge + lugeur} (désigné par la suite sous le terme simple de luge) a un
point matériel M de masse m = 100kg. La piste est considérée comme un référentiel galiléen. L’accélération de la

pesanteur est prise égale 2 g = 10m-s~2.

Partie 1 : Descente rectiligne

Apres la phase de poussée, la luge atteint une vitesse vo = 5,0m-s~!. Elle descend ensuite une
piste rectiligne de pente constante, inclinée de 10% (on descend verticalement de 10 m quand
on avance horizontalement de 100 m). On appelle o 1’angle que fait la piste avec I’horizontale.
Les frottements sont négligés devant les autres forces mises en jeu. Le point M est ainsi en
mouvement rectiligne uniformément accéléré.

1. Calculer «.

2. Par application du principe fondamental de la dynamique, exprimer 1’accélération de la luge en fonction de g et o.
Application numérique.

3. Lorigine des temps est fixée juste apres la phase de poussée. Donner I’expression de la vitesse en fonction du
temps. Au bout de quelle durée la luge atteint-elle la vitesse v, = 30m-s~! ? Application numérique.

4. Quelle est la distance parcourue lorsque la luge atteint la vitesse v, ? Application numérique.
5. Retrouver le résultat de la question précédente en appliquant le théoreme de I’énergie cinétique.

Partie 2 : Virage circulaire

A présent le point M est en mouvement circulaire uniforme 2 la vitesse V, sur un cercle de rayon r. La piste est
inclinée latéralement d’un angle € |0, % [.

La trajectoire se situe dans un plan horizontal : vV = Viig. Le triedre formé des vecteurs unitaires (i, g, ;) est
orthonormé direct.

On désigne par R = Nii+T7 la réaction de la piste, qui n’est plus uniquement normale. Les vecteurs unitaires i,
(normal) et i, (tangent) sont définis sur la figure de droite ci-dessous.

sortie

entrée

Vue de dessus de la piste Vue en coupe de la piste

6. Exprimer 1’accélération d en fonction de V, r et ii,. Justifier physiquement le sens de 1’accélération.
7. La luge n’étant soumise qu’a son poids et a la réaction du support, exprimer N et T en fonction de V, r, B, g et m.

8. Quelle est la valeur V, de la vitesse pour laquelle la réaction tangentielle est nulle ? Ecrire alors 7 en fonction de
m,r, B et (VZ—-V2).



Soit f = 0,4 le coefficient de frottement solide latéral entre la luge et 1a piste de glace. Les lois du frottement indiquent
que la luge ne dérape pas tant que |7| < fN. Dans la suite des questions, on considere uniquement le cas V > V,, ce
qui correspond & un dérapage possible vers I’extérieur du virage.

9. Montrer que V2 doit respecter ’inégalité suivante pour éviter le dérapage :
VZ(cos B — fsinB) < gr(sinf + fcosB)

10. En déduire que si I’inclinaison 3 est suffisante, il n’y aura jamais dérapage quelle que soit la vitesse V. Donner
I’inclinaison minimale a respecter, qui dépend uniquement du coefficient f. Faire I’application numérique, en degrés.
11. Si cette inclinaison minimale n’est pas respectée, montrer que la condition de non dérapage impose une vitesse V
a ne pas dépasser, a exprimer en fonction de g, r, B et f. Que risque la luge si sa vitesse est trop grande ?
12. Montrer a partir des résultats précédents qu’en I’absence de frottement latéral, on ne pourrait aborder le virage
qu’a la vitesse V.. Les frottements permettent ainsi d’avoir une certaine marge de vitesse dans un virage.

Partie 3 : Freinage de la luge

La luge franchit la ligne d’arrivée a la vitesse v, = 30m-s~!. Dans cette partie les frottements sont négligés devant
les autres forces en jeu.

Le ralentissement a I’arrivée se fait sur une piste inclinée de 10% (on monte .

de 10 m quand on avance horizontalement de 100 m). On note I’angle dese, \ " (a0l
d’inclinaison «. Déterminer la longueur L de la piste de ralentissement W 10m
nécessaire pour que la luge passe de v, = 30m-s~! a I’arrét, en utilisant : 100 m

le théoreme de I’énergie mécanique. Faire I’application numérique et con- lione d-artivé
clure sur la faisabilité de cette méthode de ralentissement. lghe darmvee




