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DS de physique n°3

Durée : 3h

L’usage de la calculatrice est autorisé. La copie doit être propre, lisible, sans faute d’orthographe. Les pages doivent
être numérotées et les résultats soulignés ou encadrés. Un résultat donné sans justification, à moins que l’énoncé
le précise, est considéré comme faux. Les valeurs numériques doivent être accompagnées de leur unité. Le devoir
comporte 2 exercices indépendants.

Exercice 1 : Mouvement dans un champ magnétique

Dans le référentiel terrestre supposé galiléen, on considère un électron de masse m pénétrant en O (origine d’un repère
cartésien Oxyz) dans une zone de champ magnétique B⃗0 = B0⃗uz stationnaire et uniforme (B0 > 0).

1. Le poids a-t-il une influence sur la dynamique de l’électron ? On attend un argument qualitatif fondé sur un calcul
d’ordre de grandeur. On considère un champ magnétique B ∼ 10−5 T et une vitesse v ∼ 107 m · s−1.
2. Montrer que le mouvement de l’électron est uniforme dans la zone magnétique.
3. On suppose que la vitesse initiale de l’électron s’écrit v⃗0 = v0⃗uz. Décrire le mouvement de l’électron.
4. On suppose désormais que l’électron pénètre à t = 0 dans cette même zone de champ magnétique avec une vitesse
initiale v⃗0 = v0⃗ux (v0 > 0). On note v⃗= vx⃗ux+vy⃗uy+vz⃗uz le vecteur vitesse à un instant quelconque. On pose ωc =

eB0
m .

a) Établir les équations différentielles du premier ordre vérifiées par vx(t), vy(t) et vz(t).
b) Déterminer z(t) à tout instant t > 0.
c) Déterminer x(t) et y(t) à tout instant t > 0 puis montrer que la trajectoire de l’électron est circulaire. Préciser quel
le centre C, le rayon Rc et la période Tc de la trajectoire.

5. Un électron accéléré non relativiste perd de l’énergie en rayonnant à un instant donné une puissance électromag-

nétique P =
e2

6πε0c3

∥∥∥∥ d⃗v
dt

∥∥∥∥2

avec e la charge élémentaire et c la célérité de la lumière dans le vide. Sous l’effet

de la puissance rayonnée la vitesse ∥⃗v∥ et le rayon Rc de la trajectoire deviennent variables. On étudie une portion
infinitésimale de la trajectoire de l’électron au cours de laquelle le rayon varie de dRc. On suppose que le rayon Rc

varie suffisamment lentement pour que les expressions obtenues à la question 4.c) soient toujours valables en première
approximation.

a) Exprimer la variation de l’énergie cinétique dEcin de l’électron en fonction de dRc.

Indication : On pourra commencer par calculer la dérivée dEcin
dRc

.
b) En déduire, à l’aide du théorème de la puissance cinétique, que Rc(t) est solution de l’équation différentielle :

dRc

dt
+

e4B2
0

6πε0m3c3 Rc = 0

c) Résoudre cette équation. Quelle est l’allure de la trajectoire ?



Exercice 2 : Mouvement d’une luge

La luge est devenue un sport olympique en 1964 à Innsbruck (Autriche). Le lugeur est allongé sur le dos, les pieds en
avant, sur la luge qui glisse sur une piste de glace. Pour freiner, le lugeur ne peut compter que sur ses pieds car la luge
ne comporte pas de frein. Les spécialistes peuvent atteindre des vitesses supérieures à 100 km/h.
Pour la modélisation, on assimile l’ensemble {luge + lugeur} (désigné par la suite sous le terme simple de luge) à un
point matériel M de masse m = 100kg. La piste est considérée comme un référentiel galiléen. L’accélération de la
pesanteur est prise égale à g = 10m · s−2.

Partie 1 : Descente rectiligne

α

M v⃗

g⃗
Après la phase de poussée, la luge atteint une vitesse v0 = 5,0m ·s−1. Elle descend ensuite une
piste rectiligne de pente constante, inclinée de 10% (on descend verticalement de 10 m quand
on avance horizontalement de 100 m). On appelle α l’angle que fait la piste avec l’horizontale.
Les frottements sont négligés devant les autres forces mises en jeu. Le point M est ainsi en
mouvement rectiligne uniformément accéléré.

1. Calculer α .
2. Par application du principe fondamental de la dynamique, exprimer l’accélération de la luge en fonction de g et α .
Application numérique.
3. L’origine des temps est fixée juste après la phase de poussée. Donner l’expression de la vitesse en fonction du
temps. Au bout de quelle durée la luge atteint-elle la vitesse va = 30m · s−1 ? Application numérique.
4. Quelle est la distance parcourue lorsque la luge atteint la vitesse va ? Application numérique.
5. Retrouver le résultat de la question précédente en appliquant le théorème de l’énergie cinétique.

Partie 2 : Virage circulaire

À présent le point M est en mouvement circulaire uniforme à la vitesse V , sur un cercle de rayon r. La piste est
inclinée latéralement d’un angle β ∈

]
0, π

2

[
.

La trajectoire se situe dans un plan horizontal : v⃗ = V u⃗θ . Le trièdre formé des vecteurs unitaires (⃗ur, u⃗θ , u⃗z) est
orthonormé direct.
On désigne par R⃗ = N n⃗+T t⃗ la réaction de la piste, qui n’est plus uniquement normale. Les vecteurs unitaires u⃗n

(normal) et u⃗t (tangent) sont définis sur la figure de droite ci-dessous.

sortie

entrée

r

O

M
u⃗θ

u⃗r

Vue de dessus de la piste

β

M
u⃗r

u⃗z
n⃗

t⃗

g⃗

Vue en coupe de la piste

6. Exprimer l’accélération a⃗ en fonction de V , r et u⃗r. Justifier physiquement le sens de l’accélération.
7. La luge n’étant soumise qu’à son poids et à la réaction du support, exprimer N et T en fonction de V , r, β , g et m.
8. Quelle est la valeur Vc de la vitesse pour laquelle la réaction tangentielle est nulle ? Écrire alors T en fonction de
m, r, β et (V 2 −V 2

c ).



Soit f = 0,4 le coefficient de frottement solide latéral entre la luge et la piste de glace. Les lois du frottement indiquent
que la luge ne dérape pas tant que |T | ≤ f N. Dans la suite des questions, on considère uniquement le cas V ≥Vc, ce
qui correspond à un dérapage possible vers l’extérieur du virage.

9. Montrer que V 2 doit respecter l’inégalité suivante pour éviter le dérapage :

V 2(cosβ − f sinβ )≤ gr(sinβ + f cosβ )

10. En déduire que si l’inclinaison β est suffisante, il n’y aura jamais dérapage quelle que soit la vitesse V . Donner
l’inclinaison minimale à respecter, qui dépend uniquement du coefficient f . Faire l’application numérique, en degrés.
11. Si cette inclinaison minimale n’est pas respectée, montrer que la condition de non dérapage impose une vitesse V
à ne pas dépasser, à exprimer en fonction de g, r, β et f . Que risque la luge si sa vitesse est trop grande ?
12. Montrer à partir des résultats précédents qu’en l’absence de frottement latéral, on ne pourrait aborder le virage
qu’à la vitesse Vc. Les frottements permettent ainsi d’avoir une certaine marge de vitesse dans un virage.

Partie 3 : Freinage de la luge

La luge franchit la ligne d’arrivée à la vitesse va = 30m · s−1. Dans cette partie les frottements sont négligés devant
les autres forces en jeu.

ligne d’arrivée

descente décélération

100 m

10 m
α

Le ralentissement à l’arrivée se fait sur une piste inclinée de 10% (on monte
de 10 m quand on avance horizontalement de 100 m). On note l’angle
d’inclinaison α . Déterminer la longueur L de la piste de ralentissement
nécessaire pour que la luge passe de va = 30m · s−1 à l’arrêt, en utilisant
le théorème de l’énergie mécanique. Faire l’application numérique et con-
clure sur la faisabilité de cette méthode de ralentissement.


