
Correction du DNS 14

EXERCICE 1

Pour tout réel x, x2 − x3 = x2(1 − x) est du signe de 1 − x. La fonction f : x 7→
√
x2 − x3 est donc définie sur

D = ]−∞, 1]. Elle est continue sur D et dérivable sur D \ {0, 1} d’après les théorèmes sur les opérations (on ne sait
pas si f est dérivable en 0 et en 1 car x2 − x3 s’annule en ces points et x 7→ √

x n’est pas dérivable en 0).

Étude en 0 : pour tout x ∈ D \ {0}, f(x)− f(0)

x− 0
=

√
x2 − x3

x
=

|x|
√
1− x

x
donc

lim
x→0+

f(x)− f(0)

x− 0
= 1 et lim

x→0−

f(x)− f(0)

x− 0
= −1.

La fonction f est donc dérivable à gauche et à droite en 0, mais f ′

g(0) = −1 alors que f ′

d(0) = 1, donc f n’est pas
dérivable en 0.

Étude en 1 : pour tout x ∈ [0, 1[,

f(x)− f(1)

x− 1
=

√
x2 − x3

x− 1
=

x
√
1− x

−(1− x)
= − x√

1− x

x→1−→ −∞

donc la fonction f n’est pas dérivable en 1.

EXERCICE 2

La fonction f est de classe C∞ sur R∗ d’après les théorèmes sur les opérations.

Par les croissances comparées on a
lim
x→0

x2 ln |x| = 0

donc f peut être prolongée par continuité en 0 en posant f(0) = 0.

Dérivabilité en 0 :

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x ln |x| = 0

donc f est dérivable en 0 et f ′(0) = 0.

Continuité de f ′ en 0 : pour tout x ∈ R∗,

f ′(x) = 2x ln |x|+ x
x→0−→ 0 = f ′(0)

donc f ′ est continue en 0 (la dérivée de ln |x| est 1

x
et non

1

|x| ).

Par conséquent la fonction f est de classe C1 sur R.

Dérivabilité de f ′ en 0 :

lim
x→0

f ′(x)− f ′(0)

x− 0
= lim

x→0
(2 ln |x|+ 1) = −∞

donc f ′ n’est pas dérivable en 0 et la fonction f n’est pas de classe C2 sur R.

EXERCICE 3

1) Posons f(x) =
1

x+ a
pour tout réel x 6= −a. En calculant les premières dérivées de f (qui est de classe C∞), on est

amené à conjecturer que, pour tout n ∈ N et pour tout réel x 6= −a, on a

f (n)(x) =
(−1)nn!

(x+ a)n+1
.

Démontrons-le par récurrence.

Pour n = 0 c’est immédiat :

f (0)(x) = f(x) =
1

x+ a
=

(−1)00!

(x+ a)0+1
.

Soit n ∈ N. Supposons que f (n)(x) =
(−1)nn!

(x+ a)n+1
pour tout réel x 6= −a. Alors

f (n+1)(x) = (f (n))′(x) = − (−1)nn!(n+ 1)(x+ a)n

(x+ a)2n+2
=

(−1)n+1(n+ 1)!

(x+ a)n+2



pour tout réel x 6= −a.

Le théorème de récurrence permet de conclure.

2) La dérivée de x 7→ lnx est x 7→ 1

x
donc pour tout n ∈ N∗ et pour tout x > 0 :

ln(n)(x) =
(−1)n−1(n− 1)!

xn
.

EXERCICE 4

1) On a f(0) = f(0 + 0) = f(0) + f(0) donc f(0) = 0.

2) Soit x ∈ R. Montrons par récurrence que f(nx) = nf(x) pour tout n ∈ N.

Pour n = 0 c’est une conséquence du 1).

Soit n ∈ N. Supposons que f(nx) = nf(x). Alors :

f((n+ 1)x) = f(nx+ x) = f(nx) + f(x) = nf(x) + f(x) = (n+ 1)f(x).

Par le théorème de récurrence, on a donc bien f(nx) = nf(x) pour tout n ∈ N.

3) On peut en fait monter que f est impaire : pour tout x ∈ R, on a 0 = f(0) = f(x + (−x)) = f(x) + f(−x), donc
f(−x) = −f(x).

Ainsi, si n ∈ Z \ N, alors pour tout x ∈ R on a f(nx) = f(−(−n)x) = −f(−nx) = nf(x) car −n ∈ N.

On a donc bien f(nx) = nf(x) pour tout n ∈ Z et pour tout x ∈ R.

4) Soient x ∈ R et r =
p

q
∈ Q (où p ∈ Z et q ∈ N∗). Alors f(px) = pf(x) et f(px) = f(qrx) = qf(rx), donc

f(rx) =
p

q
f(x) = rf(x).

5) Soient x, y ∈ R. Soit (xn) une suite de rationnels qui converge vers x. Alors f(xny) = xnf(y) pour tout n ∈ N. Or on
a, d’une part, lim

n→+∞

xny = xy donc, par continuité de f , lim
n→+∞

f(xny) = f(xy) et, d’autre part, lim
n→+∞

xnf(y) = xf(y),

donc, par unicité de la limite, on a f(xy) = xf(y).

6) Posons a = f(1). Alors d’après la question précédente on a f(x) = ax pour tout x ∈ R.

7) Posons g(x) = ax pour tout x ∈ R. Alors g est continue sur R et, pour tous x, y ∈ R, on a g(x + y) = a(x + y) =
ax+ ay = g(x) + g(y).


