
Chapitre 16 : Ondes progressives,
ondes stationnaires

1 Nature d’un signal physique

1.1 Notion d’onde

Une onde est une vibration susceptible de se propager dans l’espace de proche en proche.
Certaines ondes ont besoin d’un milieu matériel pour se propager, tandis que d’autres peuvent
se propager même dans le vide.

On appelle signal toute grandeur physique qui signale le passage d’une onde.

En termes mathématiques une onde est décrite par une grandeur physique y(M , t ) qui dépend à la
fois de la position et du temps. Nous verrons dans ce chapitre quel genre de fonction mathématique
permet de décrire une onde très simple qui se propage à vitesse constante, dans une seule direction,
sans déformation ni atténuation.

1.2 Nature d’une onde

Il existe de nombreux phénomènes physiques susceptibles de produire des ondes :

On parle d’onde mécanique lorsque celle-ci s’accompagne d’une vibration des constituants d’un mi-
lieu matériel : onde sur une corde tendue, vagues, séismes, ondes sonores, etc.
On parle d’onde électrique dans le cas particulier où ce sont les charges libres d’un conducteur qui vi-
brent de proche en proche. Les signaux électriques transmis par voie filaire (câble ADSL, câble coaxial)
en sont des exemples.
On parle d’onde électromagnétique lorsque celle-ci s’accompagne d’une vibration du champ électro-
magnétique. Contrairement aux deux types d’ondes précédents, les ondes EM n’ont pas besoin d’un
milieu matériel pour se propager. Rayons X, UV, lumière visible, infrarouges ou ondes radio sont dif-
férents exemples d’ondes EM, que l’on distingue suivant la valeur de leur fréquence.

1.3 Onde transversale, longitudinale

Une onde mécanique se propage dans un milieu matériel. Lors du passage de l’onde, les constituants
du milieu se mettent à osciller autour de leur position d’équilibre.

Lorsque la vitesse de déplacement des constituants du milieu est colinéaire à la direction de
propagation de l’onde, on dit que l’onde est longitudinale (onde acoustique, onde sismique
primaire, etc).
Lorsque la vitesse de déplacement des constituants du milieu est orthogonale à la direction de
propagation de l’onde, on dit que l’onde est transversale (ou transverse) (onde le long d’une
corde, vague, onde sismique secondaire, etc).

2 Onde progressive

2.1 Introduction

Def : Une onde est dite progressive lorsque la propagation s’accompagne d’un transport
d’énergie dans l’espace.

La direction de propagation de l’onde s’assimile à la direction dans laquelle se propage cette énergie.
Dans cette partie, nous aborderons la propagation dans le cas le plus simple, celui d’un milieu :

• illimité : nous ne tiendrons pas compte des effets dûs à la taille finie du milieu,

• transparent : le milieu n’absorbe pas l’énergie transportée par l’onde,

• non dispersif : La vitesse de propagation d’une onde sinusoïdale est la même à toute fréquence.

Sous ces hypothèses, la propagation d’une onde vérifie la propriété suivante :

Dans un milieu illimité, non dispersif et transparent, une onde garde la même “forme” à tout
instant. Entre deux dates, la propagation se traduit simplement par une translation du signal,
sans déformation.

La vitesse de propagation de l’onde est appelée célérité (notée c).

2.2 Phénomène propagatif, vision spatialle et temporelle

On considère une onde progressive qui se propage dans la direction (Ox) et est décrite par le signal
y(x, t ). On peut représenter graphiquement l’évolution de l’onde :

• avec le graphe x 7→ y(x, t ) qui représente l’allure spatiale de l’onde à un instant t donné (point de
vue spatial).

• avec le graphe t 7→ y(x, t ) qui représente la vibration temporelle dans une position x donnée
(point de vue temporel).

2.2.1 État vibratoire, front avant, front arrière

On représente ci-dessous l’allure spatiale de l’onde à une date t1 donnée. On suppose qu’elle se
propage vers les x croissants.

0
x

y(x, t1)

état vibratoire de
déformation maximale

front arrière front avant

capteur

xc

Ym



Un état vibratoire correspond à une valeur particulière prise par le signal au cours du passage de l’onde.
Imaginons un capteur, placé dans une position xc donnée, et qui enregistre la vibration t 7→ y(xc , t ) au
cours du temps.

• Le front avant de l’onde est la partie la plus avancée de l’onde, c’est aussi celle qui arrive en premier
au niveau du capteur.
• Le front arrière de l’onde est la partie la plus arriérée de l’onde, c’est aussi celle qui arrive en dernier
au niveau du capteur.

Chaque état vibratoire correspond à une valeur particulière du signal y . Par exemple l’état vibratoire

de déformation maximal correspond à y = Ym .

2.2.2 Point de vue spatial, distance de propagation

On voudrait tracer l’allure de l’onde x 7→ y(x, t2) à la date t2 > t1. Entre ces deux dates l’onde, qui
avance à vitesse constante c, s’est propagée sur une distance d = c(t2− t1). Par conséquent l’allure à la
date t2 se déduit de celle à la date t1 par une simple translation de d = c(t2 − t1) vers les x croissants.

x

d = c(t2 − t1)
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2.2.3 Passage du spatial au temporel

Imaginons que l’on place un capteur fixe situé en x1 qui enregistre la vibration lors du passage de
l’onde.
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Le capteur enregistre d’abord le passage du front avant de l’onde (front lentement montant), puis celui
du front arrière de l’onde (front rapidement descendant). On peut alors tracer qualitativement l’allure
du signal temporel enregistré par le capteur (voir figure ci-dessous).
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2.2.4 Point de vue temporel, retard temporel dû à la propagation

On voudrait maintenant tracer l’allure du signal enregistré par un deuxième capteur situé en x2 > x1.
Entre ces deux positions l’onde avance à la vitesse constante c donc elle met une durée τ= x2−x1

c pour
se propager d’un capteur à l’autre. Ainsi le signal enregistré en x2 s’obtient à partir de celui enregistré
en x1 par une simple translation de τ= x2−x1

c vers le futur. On dit aussi que le signal mesuré en x2 est
en retard de τ sur celui mesuré en x1.

t

τ= x2−x1
c
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2.3 Expression mathématique d’une onde progressive

2.3.1 Propagation dans le sens des x croissants

x
O MUn signal qui se propage à la célérité c dans le sens

positif de l’axe (Ox) met un temps τ = x
c pour se

propager de x = 0 jusqu’à une position x quelconque. Cela signifie que la vibra-
tion enregistrée en x à l’instant t est identique à la vibration enregistrée en x = 0 à
l’instant t −τ= t − x

c .

y(x, t ) = y
(
0, t − x

c

)

2.3.2 Propagation dans le sens des x décroissants

x
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positif de l’axe (Ox) met un temps τ = − x
c pour se

propager de x = 0 jusqu’à une position x quelconque. Cela signifie que la vibra-
tion enregistrée en x à l’instant t est identique à la vibration enregistrée en x = 0 à
l’instant t −τ= t + x

c .
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2.4 Application
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Le graphe ci-dessus représente, à la date t = 0, la forme d’une onde progressive se propageant
le long d’un axe (Ox) dans le sens des x croissants avec une célérité c = 0,5m · s−1.

1. Tracer la forme de l’onde aux dates t = 1s et t = 3s.
2. Tracer l’allure de la déformation subie par le point d’abscisse x = 1m au cours du temps.

3 Onde progressive harmonique

3.1 Définition

Lorsqu’une onde progressive a une forme sinusoïdale, on dit qu’elle est harmonique :


y(x, t ) = A cos

(
ω

(
t − x

c

)
+ϕ0

)
(vers les x croissants)

y(x, t ) = A cos
(
ω

(
t + x

c

)
+ϕ0

)
(vers les x décroissants)

L’état vibratoire de l’onde, pour x et t donnés, est caractérisé par la valeur de sa phase :

φ(x, t ) =ωt ± ω

c
x +ϕ0

3.2 Double périodicité spatiale et temporelle

Cette fonction présente une périodicité par rapport à la variable t : en un point d’abscisse x, l’onde
varie sinusoïdalement dans le temps, avec une période T = 1

f = 2π
ω .

y(x0, t )

t

T
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Elle présente également une périodicité par rapport à la variable d’espace x. Si l’on prend une photo
de l’onde à la date t , elle aura dans l’espace l’allure d’une d’une sinusoïde.

La longueur d’onde λ est la période spatiale d’une onde progressive harmonique. Elle dépend
de la fréquence suivant la relation :

λ= c

f

3.3 Vecteur d’onde

Soit u⃗ un vecteur unitaire dirigé dans le sens de propagation d’une onde progressive har-
monique. On définit le vecteur d’onde associé à cette onde progressive par :

k⃗ = ku⃗ avec k = 2π

λ
= ω

c

k représente la pulsation spatiale de l’onde progressive harmonique.

Avec le vecteur d’onde, on peut réécrire sous une forme différente l’expression d’une onde progressive
harmonique :

y(x, t ) = A cos
(
ωt −kx +ϕ0

)
(vers les x croissants)

y(x, t ) = A cos
(
ωt +kx +ϕ0

)
(vers les x décroissants)

3.4 Déphasage entre deux points de l’espace

Pour étudier la vibration de l’onde en un point d’abscisse x fixé, on peut écrire le signal sous la forme :

y(x, t ) = A cos(ωt +ϕ(x)) avec ϕ(x) =±kx +ϕ0

Tous les points de l’axe (Ox) vibrent de manière synchrone, à la pulsation ω, mais avec une phase
à l’origine qui dépend de la position x. Par conséquent, entre deux points A et B distants de ∆x, il
apparaît un déphasage ∆φ tel que :

∆ϕ

2π
= ∆t

T
= ∆x

λ

Où ∆t = ∆x
c est le retard dû à la propagation entre A et B.



3.5 Milieu dispersif

Def : Un milieu de propagation est dispersif si la vitesse de propagation d’une onde sinusoï-
dale dépend de la fréquence.

Dans un milieu dispersif, une onde progressive non harmonique se déforme au cours de sa propaga-
tion car elle contient plusieurs composantes harmoniques de fréquences différentes qui se propagent
avec des vitesses différentes.

4 Onde stationnaire

4.1 Réflexion d’une onde progressive harmonique

La réflexion d’une onde progressive harmonique d’amplitude A sur une paroi donne nais-
sance, dans le milieu de propagation, à une onde stationnaire (OS) de la forme :

y(x, t ) = 2A sin

(
2πt

T
+ϕ

)
sin

(
2πx

λ
+ψ

)

Une onde stationnaire présente la particularité de posséder :

• des noeuds de vibration, c’est-à-dire des points de l’espace immobiles à tout instant.
Deux noeuds consécutifs sont distants de λ/2.

• des ventres de vibrations, c’est-à-dire des points de l’espace qui oscillent avec une am-
plitude maximale (ici 2S0). Deux ventres consécutifs sont distants de λ/2. Un ventre et
un noeud consécutifs sont distants de λ/4.
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4.2 Mouvement d’une corde entre deux extrémités fixes

Lorsqu’une onde apparait sur une corde de longueur L fixée au niveau de ses deux extrémités
(d’abscisses x = 0 et x = L par exemple), elle subit des réflexions multiples sur chaque extrémité. On
peut montrer que l’onde résultante est encore une onde stationnaire, telle qu’on l’a vue dans le para-
graphe précédent.

L’OS résultante doit vérifier cette fois deux conditions aux limites : s(0, t ) = 0 ∀t et s(L, t ) = 0 ∀t . Il en
résulte que la longueur d’onde de l’OS doit nécessairement vérifier la relation suivante :

L = n
λ

2
avec n ∈N∗ ←→ λn = 2L

n

On dit que les longueurs d’onde sont quantifiées. La quasi-totalité des valeurs de λ sont interdites :
seul un nombre discret de λ, celles vérifiant l’équation ci-dessus, sont possibles sur la corde. Il en va
de même pour les fréquences, qui prennent uniquement les valeurs suivantes :

fn = c

λn
= n

c

2L

Chaque valeur de n constitue un mode propre de vibration, associée à une fréquence fn et une
longueur d’onde λn .

• Le mode n = 1 est appelé le fondamental. La fréquence f1 = c

2L
est appelée fréquence fonda-

mentale.

• Les modes n > 1 sont appelés les harmoniques de rang n. On remarque que fn = n f1 : les
fréquences des harmoniques sont des multiples entiers de la fréquence fondamentale.

4.3 Mise en évidence expérimentale des modes propres : corde de Melde

L’expérience de la corde de Melde consiste à faire vibrer l’une des extrémités d’une corde tendue de

manière sinusoïdale pour imposer dans la corde une onde à la fréquence de l’excitateur.

Les vibrations de la corde sont quasi-nulles, sauf lorsque la fréquence est celle d’un mode propre. On
voit alors apparaître des fuseaux, caractéristiques de l’apparition d’une onde stationnaire dans le sys-
tème. Plus la fréquence augmente et plus le nombre de fuseaux augmente (normal car λ diminue
lorsque f augmente).



4.4 Vibration quelconque entre deux extrémités fixes

Lorsqu’on fait vibrer une corde fixée en ses extrémités de manière quelconque, on peut montrer que
l’onde résultante est une combinaison linéaire de tous les modes propres (il y en a le plus souvent une
infinité) :

y(x, t ) =
∞∑

n=1
An sin(ωn t +ϕn )sin(kn x +ψn )

Où les coefficients An , amplitudes associées à chaque harmonique, sont caractéristiques du signal
y(x, t ).

Par analogie avec les ondes progressives, on peut définir le spectre d’une onde stationnaire à
partir des différentes fréquences qui le composent et de leur poids respectif, quantifié par la
valeur |An |.

Le son d’un instrument de musique est beaucoup plus complexe qu’une simple sinusoïde. Il est car-
actérisé à la fois par sa note (la fréquence fondamentale) et par son timbre (la richesse et l’intensité
des harmoniques). La même note, jouée par deux instruments différents, produits des sensations très
différentes chez l’auditeur. Par exemple, le diapason est un instrument de musique qui produit des
notes très pures, dont les harmoniques sont quasiment absents.

4.5 Onde stationnaire acoustique dans une cavité

On peut obtenir des ondes stationnaires acoustiques en confinant une onde acoustique dans un espace
clos. Pour simplifier l’étude, on se place dans une conduite cylindrique close à ses deux extrémités
(instrument de type flûte). On se restreint à une propagation en une dimension. Une paroi rigide
constitue pour l’onde stationnaire acoustique un ventre de surpression.

De même, si l’on ouvre l’une des extrémités du tube sur l’extérieur, on peut montrer que si le diamètre
d de l’ouverture est tel que d ≪ λ, alors l’extrémité libre constitue pour l’OS un noeud de surpression.

λ/2 λ/2

d


