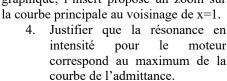
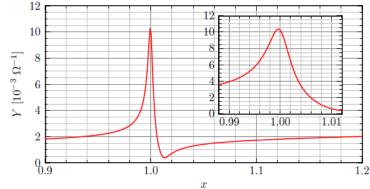

Problème : Etude de la résonance en courant d'un moteur.

Un moteur à ultrasons est alimenté par une tension sinusoïdale d'amplitude complexe \underline{U} , on note \underline{I} l'amplitude complexe de l'intensité du courant passant dans le moteur. Pour que le rendement du moteur soit optimal, il doit être alimenté à une fréquence égale à sa fréquence de résonance en courant.

Le moteur est équivalent au schéma ci-contre. \underline{Z}_{O} représente l'impédance complexe intrinsèque du moteur. Les phénomènes électromécaniques au sein du moteur sont pris en compte, sur ce schéma, par une impédance motionnelle \underline{Z}_{m} et par une impédance de charge mécanique \underline{Z}_{e} .


Le dipôle d'impédance Z_0 est modélisé par un conducteur ohmique de résistance R_0 =18 k Ω en parallèle avec un condensateur de capacité C_0 =8nF. L'impédance motionnelle Z_m est modélisée par l'association en série d'un conducteur ohmique de résistance $R = 50\Omega$, d'une bobine d'inductance propre L=0,1H et d'un condensateur de capacité C=0,2nF. Enfin, l'impédance de charge Z_0 correspond à une résistance R_0 dans un premier temps prise égale à S_0 0.


1. Dessiner le schéma équivalent du moteur en remplaçant les impédances \underline{Z}_0 , \underline{Z}_m et \underline{Z}_e par les résistances, bobines et condensateurs qui leur correspondent.

On étudie dans un premier temps uniquement l'association en série de \underline{Z}_m et de \underline{Z}_e .

- 2. Exprimer l'admittance <u>Y</u>_S de cette association en fonction de R, L, C, R_C et (jω). (On rappelle que l'admittance d'un dipôle est l'inverse de son impédance).
- 3. Déterminer le module Y_s de cette admittance et montrer qu'il passe par un maximum pour une pulsation ω_s à déterminer. Exprimer également Y_s à la pulsation ω_s .

On note \underline{Y} l'admittance équivalente à la totalité du moteur, et Y le module de cette admittance. La figure ci-contre représente l'évolution de Y en fonction de la pulsation réduite $x = \frac{\omega}{\omega_S}$. Dans ce graphique, l'insert propose un zoom sur la courbe principale au voisinage de x=1

- 5. D'après la courbe, quelle approximation peut-on faire pour la pulsation de résonance ω_r du moteur ? En déduire l'expression de la fréquence de résonance f_r et faire l'application numérique.
- 6. Exprimer l'admittance intrinsèque du moteur \underline{Y}_0 puis son module Y_0 . Evaluer numériquement Y_0 et Y_S à la pulsation de résonance. Commenter alors l'écart entre ω_S et ω_r .
- 7. Une modification de la charge mécanique du moteur provoque une variation de la résistance de charge R_C de l'ordre d'une dizaine d'ohms. Cette variation a-t-elle un effet significatif sur la fréquence de résonance en courant ? En quoi est-ce un avantage pour le fonctionnement du moteur ?