Cours de physique PCSI2 2025-2026
Mouvements et interactions.

Description et paramétrage du mouvement d’un point.

Introduction.

La mécanique est la science de 1’étude du mouvement des corps. Elle se décompose en deux parties :
» La cinématique désigne I’ensemble des outils nécessaires pour décrire le mouvement de maniére
formelle.
» La dynamique désigne I’ensemble des lois permettant d’étudier les causes du mouvement observé.
Il est important de bien distinguer ces deux étapes dans les études mécaniques. Elles sont aussi essentielles 1’une
que ’autre. Dans ce premier chapitre, on ne se soucie donc que de décrire le mouvement d’un systéme sans se
soucier des causes de ce mouvement.

1. Description du point de vue d’un observateur.

1.1. Relativité du mouvement.

Prenons le cas d’un passager assis dans un train lancé sur les rails a pleine vitesse entre Paris et Marseille.

e Selon le point de vue de ce passager, il est immobile par rapport au train, sa position est fixe dans le
temps, son vecteur vitesse et son vecteur accélération sont nuls.

e Selon le point de vue d’un ruminant situé dans un champ le long de la voie ferrée, le train et, par
conséquent, le passager sont en mouvement, le vecteur position du passager évolue au cours du temps,
son vecteur vitesse est non nul et son vecteur accélération peut ne pas étre nul.

e Le passager et le ruminant sont deux observateurs qui décrieront le mouvement d’un méme objet
d’étude de maniere différente car leurs points de vue sont différents.

Conclusion : Le mouvement d’un objet est une notion relative au point de vue adopté, la premiére précaution a
prendre dans une étude cinématique est de préciser le point de vue adopté en spécifiant le référentiel dans
lequel on réalise cette description.

1.2. Définition d’un référentiel.
a. Repére.

Définition : Un repére est la donnée d’un point O qui servira d’origine, et de trois directions fixes, définies par la
donnée d’un triedre non coplanaire de vecteurs unitairesé,,é,,é,, fixes du point de vue de 1’observateur

considéré.

» La position d’un point M est alors définie dans ce repére par le vecteur position@\? .
» En général, on choisit le triede €,,¢é,, €, orthonormé et direct.

b. Horloge.

Définition : L’horloge désigne la référence de temps utilisée par 1’observateur pour décrire le mouvement. Elle
est décrite entiérement par la donnée d’un instant de référence, 1’origine des temps, et par la durée observée entre
cet instant de référence et ’instant ou 1’observateur voit un événement survenir.

c. Référentiel.

Définition : Un référentiel permet de définir le point de vue adopté par un observateur pour décrire un
mouvement. Il est constitué d’un repére spatial et d’une horloge.

Dans I’exemple introductif, le référentiel pour 1’observateur du train est le suivant :
» Un repére spatial ayant pour origine son siége et les trois directions fixes suivantes : une le long du
train, une verticale et pour finir une horizontale perpendiculaire a la premiére.
» Sa montre avec laquelle il mesure par exemple la durée du voyage en repérant les instants de départ et
d’arrivée.

Dans I’exemple introductif, le référentiel pour 1’observateur dans le champ est le référentiel terrestre :
» Un repére spatial ayant pour origine sa position et les trois directions fixes suivantes : une le long des
rails, une verticale et pour finir une horizontale perpendiculaire a la premiére.
» Sa montre avec laquelle il mesure par exemple les instants de passage de la téte du train et de la queue
du train en face de sa position.

1.3.  Postulat de la mécanique classique.

Enoncé : Les horloges de deux référentiels différents mesurent des durées égales.

Ce principe de la mécanique classique est né de I’observation de mouvements qui étaient accessibles a 1’époque
ou il a été formulé :
» Par exemple, pour notre train, la durée du voyage sera la méme pour un observateur dans le train et un
observateur dans le référentiel terrestre.
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En 1905, Albert Einstein a exposé¢ dans un article la théorie de la mécanique relativiste. Son objectif était de
définir une nouvelle théorie de la mécanique qui soit compatible avec la théorie de 1’électromagnétisme de
Maxwell.

Dans cette théorie, les durées mesurées entre deux évenements dépendent de 1’observateur considéré :

» Du point de vue d’un observateur fixe dans le référentiel d’étude, on mesure une durée T pour le temps
de parcours d’une longueur L par une particule se déplagant en ligne droite a une vitesse v par rapport
au référentiel d’étude.

» Du point de vue de la particule, on mesure une durée T°.

2\_1
La relation liant T et T” est alors la suivante : T=T '(1—(%) ) %, on constate donc que T>T’. On appelle ce

phénomene « dilatation du temps ».

Par exemple : On considére un proton participant au rayonnement cosmique. Il entre en collision avec un atome
des couches hautes de I’atmosphére terrestre, ce qui génére un muon a une altitude de 1’ordre de 30km.

Ce muon est une particule élémentaire présentant une vitesse proche de la lumiére, elle met donc, dans le
référentiel terrestre une durée de 10™*s pour atteindre la surface de la planéte.

Le muon est une particule qui présente une durée de % vie de 2.10, sur cette durée la moitié d’une population
de muons générés a haute altitude se serait dissociée. Le rapport entre le temps de transit et la durée de vie
entrainerait une population de muons a la surface terrestre qui serait divisé par 2%, on en capterait trés peu.
L’observation est tout autre, elle est beaucoup plus cohérente avec une population divisée par 2° ce qui suggére
que le temps vu par la particule lors de ce trajet est de 1’ordre de 3 fois la durée de vie. On peut en déduire que la
vitesse du muon est de I’ordre de 99,8% de la vitesse de la lumiére.

Conclusion : Le postulat d’invariance des horloges lors d’un changement de référentiel est une approximation
qu’on jugera valide dans la plupart des études menées cette année. Cette approximation est plus généralement
valable dés lors que les vitesses des objets étudiés respectent v<c/10.

2. Description du mouvement d’un point.

2.1. Eléments de description.
a. Vecteur position.

Définition : La description du mouvement d’un point M dans un référentiel passe par la donnée du vecteur
position OMde ce point a chaque instant t. On dit que I’on définit alors la trajectoire du mouvement.

b. Vecteur vitesse.

Définition : Le vecteur vitesseV,, ,d’un point dans un référentiel R est la dérivée
dOM
dt Jq

temporelle du vecteur position dans ce référentiel : v, R:(

Propriété : Le vecteur vitesse est tangent a la trajectoire du point M et est dirigé dans le e
sens du mouvement. e

c¢. Vecteur accélération.

Définition : Le vecteur accélérationd,, ,d’un point dans un référentiel R est la dérivée temporelle du vecteur
dVy | _(d’OM
dt Jr dt?

vitesse dans ce référentiel : d,, R:(
R

Si on exprime la vitesse sous la forme suivante VM’R:”VM’R” Uy g

d”VM,R” duM,R

Alors I’accélération sécrit sous la forme : ZI'M,R:( i ) Uy gV g I
R.

Elle est composée :

- d|jv .
» d’une accélération tangentielle : d,, R’T:(W) U, p dont la norme est la dérivée par rapport au
R.
temps de la norme de la vitesse.
Up,r

> d’une accélération normale : Gy, , y=V » dont la norme est proportionnelle a la vitesse et a la

dt
dérivée par rapport au temps du vecteur unitaire donnant la direction et le sens de la vitesse.
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2.2. La base de projection cartésienne.

Définition : La base cartésienne désigne un triedre orthonormé direct de
vecteurs généralement désignés par €, ,»€, désignant trois directions fixes
dans le référentiel d’étude. Les coordonnées dans cette base de projection
sont définies par: OM=xe,+ye +ze,

avec  x=¢,.0M ;y:§y.a\71 :z=¢,.0M

Expression du vecteur déplacement élémentaire.
Le petit vecteur déplacement s’exprime directement a partir des petites

variations des trois coordonnées : |d OM=dxé +dyé +dz EZ|

Vecteur vitesse : on dérive le vecteur position exprim¢ dans la base .
cartésienne par rapport au temps :
) —dxé' +
— . Cx
g dt

(d(ﬁ?

s

dt y+ﬂ

dt

7 e,=x.e+y.e +z.e)

Vecteur accélération : on dérive le vecteur vitesse exprimé dans la base cartésienne
d i; d2 dZ d2

VMIR| _d X y- Z-> _ . .

( i ). ae ot ey+_dt2 e,=%.e+y.e+i.e)

Surfaces élémentaires et volume élémentaire :
La surface élémentaire de vecteur unitaire normal €, s’exprime d S, =dydz e,

La surface élémentaire de vecteur unitaire normal €, s’exprime d S, =dxdzé,
La surface élémentaire de vecteur unitaire normal €, s’exprime d S,=dxdy €,
Le volume élémentaire en coordonnées carrtésienne s’exprime dV =dxdydz

2025-2026

ar rapport au temps :

2.3. La base de projection cylindro-polaire. 7
Définition : La base cylindrique, encore appelée cylindro-polaire, u,
désigne un triedre orthonormé direct de vecteurs généralement désignés S ug
par ('ér,'é‘,,_éz), €., €, dépendant du paramétre angulaire 6 décrivant la M
position du point étudié et ¢é,désignant une direction fixe dans le | T
référentiel d’étude. Les coordonnées dans cette base de projection sont : "
(r,0,z). :
L —_— L zZM
Le vecteur position s’exprime alors:OM =re +ze,. 0 ! y
! _
Expression du vecteur déplacement élémentaire. T2
Si on considére un déplacement élémentaired OM au départ du point : O up
OM=ré +z¢, m
On peut I’exprimer : d(ﬁVI:dr.'ér+rd!9.'é9+dzé’Z x Ur

-

Propriété : Les vecteurs Er,ee dépendent du point M considéré plus particuliérement de ’angle 0, on peut

-

r

exprimer les variations de ces vecteurs de la base lorsque le point M change par : 0

=e,;

-

dee_ N

o~

Vecteur vitesse.

On dérive le vecteur position exprimé dans la base cylindro-polaire par rapport au temps :

de

+ Cr
"\ar

dze,
dt

dre,
dt

dOM
dt

.-

=re,

(12 A% @

Vecteur accélération.

)

) +ze,=re+rfé,+z¢,
R

On dérive le vecteur vitesse exprimé dans la base cylindropolaire par rapport au temps :

dv die, drbe d28,\ i e\ e mn aa L
( dAtLR)R:( dt )R+( dt 6)R+( dt )Rz(re,+r9e9)+(r9e6+r6e9—r92e, tze,
Finalement : ‘;A;’R :(f—réz)'ér+(2f9+ré)_ée+z_éz

R
Surfaces élémentaires et volume élémentaire :

La surface élémentaire de vecteur unitaire normal €, s’exprime d S,=(r d0)dz ¢,

La surface élémentaire de vecteur unitaire normal €, s’exprime d S,=drdz €,
La surface élémentaire de vecteur unitaire normal €, s’exprime d S,=dr(r d0)e,
Le volume élémentaire en coordonnées carrtésiennes s’exprime dV =dr(r d0)dz

3
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2.4. Coordonnées sphériques. z,

Définition : La base sphérique désigne un triédre orthonormé direct de Ur
vecteurs généralement désignés par ('ér, é,,e q,). Les trois vecteurs sont M

dépendants du point considéré. Les coordonnées dans cette base de
projection sont (r,8,¢). M
Le vecteur position s’exprime sous la forme :OM=r e,.

Expression du vecteur déplacement élémentaire. e
Si on considére un déplacement élémentaired OM au départ du point : PM Sl

OM=rd,
On peut I’exprimer :|da\7I:dr.'ér+rd9.'ée+r sin9d<p’é¢| x

Vecteur vitesse.

Il est difficile d’exprimer les dérivées des vecteurs unitaires dans cette base. On peut cependant trouver le

vecteur vitesse assez simplement a partir de 1’expression du petit vecteur déplacement.
On obtient : :f‘.E,+r6._ée+r(psin9.E¢|

|VM/R

Vecteur accélération.
On donne juste ici son expression, elle n’est pas a retenir !!!!

|5M,R:(F—rQz—rsin29¢2)é’r+(ré+2f@—rqbzsin9cos9)69+(rsin9¢+2f<psin9+2r9¢cos(-)).'é(p|
Surfaces élémentaires et volume élémentaire :
La surface élémentaire de vecteur unitaire normal €, s’exprime dS,=(r d6)(r sinfdg)ée,

La surface élémentaire de vecteur unitaire normal €, s’exprime d S,=dr(r sinfd ¢)é,
La surface élémentaire de vecteur unitaire normal €, s’exprime d S, =dr (rdo)é v
Le volume élémentaire en coordonnées carrtésienne s’exprime dV =dr(r d0)(r sinfd )

3. Choix d’une base adaptée pour I’étude d’un mouvement.

3.1. Mouvement a accélération constante. i ———
I /£ Mo
L’étude du mouvement d’une balle dans le référentiel terrestre fourni un bon / l? N
exemple de mouvement a accélération constante, puisque dans un modéle Mo !
simple, ce systéme évolue dans le champ de pesanteur terrestre qui impose une
accélération d,;;,=g ou g est le vecteur accélération de la pesanteur a la surface g}

de la planete. 0 2
on suppose qu’a I’instant initial : V,,,,(t=0)=v, € +v,, ¢, et OM(t=0)=he, ——— e e >

L’étude théorique de tout mouvement commence par les choix suivants :

o Le référentiel dans lequel on effectue la description du mouvement. On choisit ici de maniére évidente

le référentiel du laboratoire (ou le référentiel terrestre local).

e La base de projection la plus adaptée a I’étude du mouvement considéré. Ici, on a deux éléments qui

guident notre choix :
» Le vecteur accélération constant qui introduit une direction verticale privilégiée

» Le vecteur vitesse initiale qui présente une composante horizontale et une composante

verticale.

On a deux directions fixes qui se dégagent de la description du systéme, on s’oriente vers une base de

projection cartésienne s’appuyant sur ces deux directions.

Le vecteur accélération dans la base choisie s’écrit alors d,,,,=—g¢,.
Par projection dans la base cartésienne, on obtient : a,=0 et a,=—g

z

ac 9

On intégre en tenant compte des conditions initiales :v, (t)=v,, et v,(t)=v,,—gt

. . dv
Les composantes de la vitesse vérifient alors d_tx =a,=0 et

Z_
__VOz_gt

. L. dx
Les composantes du vecteur position vérifient alorsE =v, et it

On intégre en tenant compte des conditions initiales : x(t)=v,t et v,(t)= h+vOZt—%t2

On peut déterminer la trajectoire du point étudié¢ dans le plan (O €., 'éz) en déterminant z(X) :

. . . . . X
Ici on peut simplement exprimer le temps en fonction de x ce qui donne. t=—
VOx

. L. . , . v . Yy . R
Puis en réintroduisant dans I’expression de la cote z(x)=h+—2% x— g x°qui est I’équation d’une parabole.

2
VOX VOz
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3.2. Etude du mouvement circulaire.

a. Etude du mouvement circulaire a vitesse constante.

On considére une barre tournant autour d’un axe fixe et par rapport a laquelle elle est équilibrée. On doit
effectuer un choix adapté de la base de projection pour mener 1’étude de ce mouvement.

On identifie ici une trajectoire circulaire de centre O le centre de la barre qui est fixe dans le référentiel
d’étude. La base de projection polaire(é,,¢,) dans le plan du mouvement, complétée éventuellement en
base de projection cylindrique avec un vecteur « axial » en(¢,,¢,,¢,).

Dans cette base de projection, le vecteur position est OM=a _ér

La vitesse de rotation est constante, on la note souvent 0=w.Le vecteur vitesse
dOM 4 de,
d Jq dt

Ou vo la vitesse du point matériel sur le cercle est donc proportionnelle au rayon et
a la vitesse de rotation «. Il reste a déterminer le vecteur accélération : -+

- - 2 1
dv de v
- MI/R 0 2> O -
Ay r= —aw|——| =—aw'é,=—¢,.
dt i dt |y a

L’accélération est centripéte (dirigée vers le centre de la trajectoire circulaire) et
elle varie en fonction du carré de la vitesse et en inverse du rayon.
Ces caractéristiques sont assez intuitives pour tout conducteur ou passager d’une voiture.

, - e s
s’exprime alors .vM,R—( ) —aweé,=vye,
R

b. Etude du mouvement circulaire a vitesse variable.
Pour illustrer ce type de systéme, on va étudier le mouvement d’un pendule simple dans

le plan vertical (O, ¢,,¢,) €y
La trajectoire est circulaire de centre O fixe dans le référentiel, on utilise toujours un ] ©
base (cylindro-)polaire (&,,¢,,€): : g
L o de,\ .. ! :
Vecteur position OM =l¢, Vecteur vitesse vM,R:I(—') =lfe,=ve,. :
dt :
R i 8 M
1 s . . . - deg . D . VZ-. Z !
Vecteur accélération a,,,,=10¢,+10|—— | =10¢e,—10°¢,.=veé,——¢, ¥ —
dt /g l &

On retrouve la méme composante centripéte de I’accélération dirigée vers le centre du
mouvement circulaire, on voit apparaitre une nouvelle composante ortho radiale liée aux variations de la vitesse
angulaire du mouvement circulaire.

3.3. Repére de Frenet pour une trajectoire plane connue.

Le repére de Frenet permet d’effectuer une généralisation
a toutes les trajectoires planes des observations faites sur
la trajectoire circulaire lorsqu’on introduit la vitesse du
point le long de la trajectoire circulaire dans les
expressions des ¢léments de cinématique.

On considére une trajectoire plane quelconque qu’on
désignera par la suite par I'.

» Le premier élément introduit est 1’élément qui
repére la position du point M le long de la trajectoire. Puisque la trajectoire est imposée, il suffit de
donner la distance parcourue par ce point depuis un point de référence noté ici Mo. On nomme ce
paramétre abscisse curviligne et on le note généralement s(t). Son expression mathématique est

alors s(t)= J' ds ou ds désigne la distance €lémentaire parcourue le long de I par le point M.
MO-F>M( t)
> En un point M(t) de la trajectoire, on peut alors introduire u, le vecteur unitaire tangent a la trajectoire
orienté¢ dans le sens de parcours de la trajectoire. Le vecteur déplacement élémentaire du point M est
alors exprimé facilement par d M, M (t)=ds1i,

dM, M _ . _

La vitesse du point M le long de la trajectoire est alorsv,,, ;= at Sup=viy

Ce qui rappelle la forme V,,,,=v €, de la trajectoire circulaire
A . . di,_ _  di,
On peut exprimer 1’accélération au point M sous la forme a,;, ,=3U,+35 ekt Up+v a

2
Ce qui rappelle la forme EM,R:\'/EG—VTEB
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»  On introduit le vecteur unitaire U, et le rayon de courbure p(M) de la trajectoire en M(t) tels que la

trajectoire s’approxime par le cercle tangent de rayon p(M) et dont le centre est pointé par T
2

A s \ . - . VL
L’accélération dans le repere de Frenet s’exprime : d,, z=VUp+—1Uy
p

A propos des bases orthonormées directes. B3 Fr0- e

Régles pour construire un triedre direct de vecteurs (ou pour vérifier le sens direct
d’un triédre).

majeur
- 2 pouce index
e Les trois doigts de la main droite : €, aligné sur le pouce tendu dans le &

plan de la paume, €, aligné sur I’index dans le plan de la paume, alors

€, aligné sur le majeur dressé perpendiculairement a la paume.
Base orthonormée directe :

Une base orthonormée directe (5 1,€2,€3 ) est un triédre dont chaque vecteur est

de norme unitaire, chaque couple de vecteur est de produit scalaire nul (on dit encore qu’ils sont orthogonaux
deux a deux), et de sens direct.

Capacités exigibles

o Savoir que le mouvement est relatif a un référentiel.

o) Citer une situation ou la description classique de I'espace ou du temps est prise en
défaut.

o Définir les vecteurs position, vitesse et accélération d’un point

o Exprimer a partir d’'un schéma le déplacement élémentaire dans les différents
systemes de coordonnées, construire le triedre local associé et en déduire
géométriquement les composantes du vecteur vitesse en coordonnées cartésiennes et
cylindrigues.

o Etablir les expressions des composantes des vecteurs position, déplacement
élémentaire, vitesse et accélération dans les seuls cas des coordonnées cartésiennes et
cylindrigues.

o Identifier les degrés de liberté d’'un mouvement. Choisir un systeme de coordonnées
adapté a la situation étudiée.

o) Dans le cas d’'un mouvement uniformément accéléré, exprimer les vecteurs vitesse et
position en fonction du temps. Etablir I'équation de la trajectoire en coordonnées
cartésiennes.

o Dans le cas d’'un mouvement circulaire uniforme ou non uniforme : Exprimer les
composantes du vecteur position, du vecteur vitesse et du vecteur accélération en
coordonnées polaires planes.

o) Repérage d’'un point dont la trajectoire est connue, repére de Frenet: Situer

gualitativement la direction du vecteur vitesse et du vecteur accélération pour une
trajectoire plane. Exploiter les liens entre les composantes du vecteur accélération, la
courbure de la trajectoire, la norme du vecteur vitesse et sa variation temporelle.
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Lois de Newton.

Introduction.

On a vu dans le chapitre précédent les outils permettant de décrire le mouvement d’un point ou d’un solide. On
va maintenant s’attacher a 1’étude des causes du mouvement et des principes posés et exploités en dynamique
pour en déduire le mouvement d’un systeme.

1. Eléments d’inertie d’'un systéme mécanique.

1.1. Masse inertielle et quantité de mouvement d’un point.

a. Masse inertielle.
Dans le chapitre précédent, on a introduit les éléments nécessaires a la description du mouvement d’un point ou
d’un solide (dans quelques cas simples), mais il ne suffit pas de connaitre le mouvement du systéme étudié pour
faire le lien avec les causes de ce mouvement :
e Pour attraper une balle de tennis lancé a une vitesse v, il suffit en général d’étre relativement habile (et
que le lanceur le soit aussi).
e Sion remplace la balle de tennis par une boule de pétanque, il est en général conseillé d’étre également
relativement costaux.

Définition : L’inertie d’un systéme mécanique mesure la capacité de ce dernier a s’opposer a la modification de
son mouvement.

b. Modéle du point matériel.

Définition : La masse (inertielle) d’un systéme mécanique X, souvent notée ms, est une grandeur scalaire
mesurant I’inertie d’un systéme relativement a son mouvement global de translation. Elle s’exprime en kg.

Mod¢éle du point matériel : Le modéle du point matériel revient a réduire la description d’un systéme a un point
auquel on attribue la masse totale du systéme.
Définition : Pour un point matériel M de masse m et de vitesse dans le référentiel R v,,,,, on définit la quantité

de mouvementp,,,, comme le produit de la masse par le vecteur vitesse : P, ,r =MV z

1.2.  Centre d’inertie et quantité de mouvement d’un systéeme.

a.  Quantité de mouvement.

Définition : Pour un systéme étendu, la masse et la quantité de mouvement totale du systéme sont la somme des
masses et des quantités de mouvement de I’ensemble des parties du systéme.
Pour une répartition de points matériels donnée par :{M i mi} ie[1,N],
i} N
La masse totale est Ms= Z m; ; la quantité de mouvement totale est exprimée par : p 5 R= z ml.i/’,.J R
i=1 4 i=1

b. Centre d’inertie.

Définition : Pour un systéme matériel X étendu, on définit le centre d’inertie G du systéme comme le barycentre
de la répartition de masse du systéme. Pour une répartition de points matériels donnée par :[M i,mi] ie[1,N],

N
le vecteur position du centre d’inertie G est donnée par : m; OG = Z m,OM,

i=1
Propriété : Pour un systéme étendu de masse totale ms et de centre d’inertie G, la quantité de mouvement totale
du systéme dans le référentiel R peut s”écrire sous la forme : p; ,=m V¢,

N
Démonstration : On peut partir de la définition du centre d’inertie G : m; OG = z m;OM,
i=1
On dérive alors cette relation par rapport au temps dans le référentiel d’étude R :

d| == . dlv =—| _v - _- o .
E(mZOG):mEVG/R eta ZmiOM,. R:Z m;V; p= Py/g» ON Obtient bien Py R=Ms Vo
i=1 i=1

Propriété : En appliquant le modéle du point matériel & un objet étendu, on étudie en fait le mouvement de
translation du centre d’inertie du systéme étudié.
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2. Les lois de Newton, ou les principes de la mécanique newtonienne.

2.1.  Premiére loi de Newton (ou principe d’inertie).

Enoncé : 1l existe des référentiels, dits galiléens, pour lesquels le mouvement d’un point matériel isolé est une
translation rectiligne uniforme.

» Une translation rectiligne uniforme est un mouvement de vecteur vitesse constant.
»  Un point matériel isolé n’est soumis a aucune action mécanique.
» La mécanique Newtonienne (ou classique) postule donc I’existence de référentiels galiléens.

Cette année, les référentiels d’études seront supposés galiléens. Par exemple le référentiel terrestre n’est pas
parfaitement galiléen mais 1’hypothése reste raisonnable pour la plupart des systémes étudiés.

» Mouvement relatifs de deux référentiels galiléens :

Si on suppose que deux référentiels R, et R, sont galiléens, les vecteurs vitesses V€tV d’un point matériel

isolé sont constants dans chacun des référentiels.

Vg, €st de direction fixe dans Ri. R, ne peut pas étre en rotation par rapport a R, puisque dans ce cas la
direction du vecteur vitesse du point M étudié serait variable dans R,. Par conséquent, R, et R, sont en translation
I’un par rapport a ’autre, c¢’est-a-dire qu’ils partagent le méme systéme d’axe €,,¢,,¢€,. Il reste a étudier le
mouvement relatif de leurs origines.

, . . or . dO,y do,0, do,,
En reprenant I’expression de la vitesse dans le référentiel R, v, = = +
e Jp at  Jg dt )y

, e o - -
qu’on traduit Ve, = Vo,ur, Vg, € 0N €N conclut que VOZ/R1 est constant.

Conclusion : Deux référentiels galiléens sont en translation rectiligne uniforme 1’un par rapport a I’autre.

2.2. Actions mécaniques. Troisiéme loi de Newton.
a. Définitions.

Définition d’une action mécanique : La notion d’action mécanique regroupe tous les phénomeénes susceptibles
de mettre en mouvement un objet (ou de le déformer si c’est possible).

Actions mécaniques sur un point matériel :

Lorsqu’on considére un point matériel M, 1’action mécanique exercée par un systeme extérieur S sur le point M
est décrite par un vecteur nommé vecteur force et généralement noté F . ,,. Sa norme s’exprime en Newton (N).

Actions mécaniques sur un systéme matériel :

Lorsqu’on considére un systéme matériel X, on pourra définir une action mécanique en précisant le vecteur force
qui lui est associé et sur quelle sous partie du systéme elle s’applique. On reviendra sur ce point quand on
étudiera le mouvement d’un solide a la fin de cette séquence de mécanique.

b. Troisi¢me loi de Newton, principe des actions réciproques.

Soient deux points matériels M, et M,. On note F |, la force exercée par M, sur My, et F,,, la force exercée par
M, sur M. Le principe des actions réciproques affirme que ces deux forces sont de méme direction que I’axe
(MiM:) , de méme normes et de sens opposés. F,,,=—F,,,; F,,,AM, M,=0

Exemple : La force exercée par une personne sur la terre est de méme intensité que celle exercée par la terre sur
cette personne. Pour la personne, cette force est importante car sa masse est petite, pour la terre, elle est ridicule
car sa masse est énorme.

c. Application : tension d’un fil idéal.

T -
152 T.Z_)l A T(B) T(A)
(]?\N;\(Z‘)\ T(A) B A ]—-’,(B) .

On consideére un fil tendu entre deux points A et B, et M un point le long du fil.
La tension ".T"l_,zdu fil est la force exercée par la partie du fil d’un coté de M (1) sur I'autre partie du fil (2). La
tension Tl_ﬂest orientée de (2) vers (1).
e Le principe d’action réaction affirme que en un point M le long du fil : Tzélz— THZ.
e Pour un fil idéal, c’est-a-dire de masse négligeable et inextensible, on montre que les tensions exercées
par le fil sur les points A et B sont opposés.
e Pour un fil et une poulie idéale, poulie de masse négligeable et le fil ne glissant pas sur la poulie, on
montre alors que les tensions exercées par le fil sur les points A et B sont de méme norme.
8
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2.3. Seconde loi de Newton (ou principe fondamental de la dynamique ou loi de
la quantité de mouvement).

Enoncé : Dans un référentiel galiléen, la quantité de mouvement du point matériel M de masse m est reliée a
I’ensemble des forces exercées sur ce point par 1’équation : ( pM/R) z F,u
Pour un systéme mécanique plus complexe qu’un point matériel, le principe fondamental de la dynamique se

traduit simplement par : ( P Z F,y

o dp - >
Pour un systeme fermé de masse constante et de centre d’inertiec G (% =Mydg = Z Fy
R

3. Mouvement dans le champ de pesanteur terrestre uniforme.

On considére un projectile modélisé par un point matériel M de masse m dans le champ de pesanteur terrestre.
On se place dans le référentiel terrestre R supposé galiléen.

-

On utilise une base de projection cartésienne (_éX,E ys€ ) avec (EZ) vertical vers le haut et le vecteur vitesse a

I’instant initialv, dans le plan (ex, ez)
Le bilan des actions mécaniques s’exercant sur le projectile est :

e L’action mécanique de la gravité terrestre s’exerce a distance en tout point du solide et peut étre
modélisée comme une force de vecteur f’zmé qui s’applique au centre d’inertie du systéme, qu’on
appelle souvent le « poids ».

e L’action mécanique de I’air sur le solide est une action de contact. Elle peut étre modélisée par deux
composantes :

» La poussée d’Archimede qui résulte des forces de pression exercé par le fluide entourant le
solide. Elle est modélisable par une force s’appliquant au centre de masse du solide et de

vecteur A=—m g oump est la masse de fluide déplacée par le solide.

» Une trainée qui résulte des frottements engendrés par le mouvement du solide dans le fluide et
qui s’oppose a ce mouvement. On la modélise par un vecteur force s’appliquant au centre
d’inertie, de méme direction mais de sens opposé au vecteur vitesse. L’expression de sa norme
fait I’objet de plusieurs modélisations possibles.

3.1.  Etude en négligeant les frottements.
a. Bilan des forces.
La liste des forces s’exercant sur le projectile est :
e Le poids du projectile : P=m g
e On néglige toutes forces de frottement et on supposera que la poussée d’ Archimede est négligeable.

b. Application de la seconde loi de Newton.

-

. . . d
Dans le référentiel terrestre supposé galiléen, la seconde loi de Newton s’énonce : (%) =P
R

Ce qui améne 4 : @,,,,=¢g On tombe sur le mouvement & accélération constante du cours de cinématique.

3.2. Etude en appliquant un modéle de frottement linéaire.

La force de frottement fluide linéaire est un bon modele dans le cas ou 1’écoulement de I’air autour du projectile
présente un caractére laminaire, ce qui est le cas pour de faibles vitesses du projectile par rapport au fluide.

a. Bilan des forces.
La liste des forces s’exercant sur le projectile est :
e Le poids du projectile : P=mj
e La force de frottement linéaire exprimée par : f= — V) ke
e On néglige encore ici la poussée d’ Archimede.

b. Application de la loi de la quantité de mouvement.

dp =
On applique la loi seconde loi de Newton dans le référentiel terrestre supposé galiléen : (%) =P—aVy:
R

On la projette sur les vecteurs de la base : m.x=—a x m.ay:O mi=—mg—az

On obtient ici les équations du mouvement pour le projectile.

¢. Résolution des lois du mouvement obtenues. (A faire en direct)
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3.3. Etude en appliquant un modéle de frottement quadratique.

La force de frottement fluide quadratique est un bon modéle dans le cas ou I’écoulement de I’air autour du

projectile présente un caractére turbulent, ce qui est le cas pour de grandes vitesses du projectile par rapport au
fluide dans lequel il évolue.

a. Bilan des forces.
La liste des forces s’exercant sur le projectile est :
e Le poids du projectile : P= mg
e La force de frottement linéaire exprimée par : f =— B[V 4zl V y1/-

b. Application de la loi de la quantité de mouvement.

. : : . dp - . -
Loi de la quantité de mouvement dans le référentiel terrestre supposé galiléen : (%) =P—=BVi/cll Visr
R

On la projette sur les vecteurs de la base pour obtenir les équations du mouvement :
mi=—BVi’+7’x m.a,=0 mi=—mg—BVi’+:'7|

On obtient un systéme d’équations couplées et non linéaires. Il est impossible d’en extraire des solutions
analytiques dans le cas général.

c. Cas particulier de la chute libre sans vitesse initiale.

On s’intéresse maintenant a un sous cas de I’étude précédente ou le systéme est laché sans vitesse initiale. On se
\ \ e \ . . \ , . ’ . . .2

rameéne alors a une étude a une dimension ou la cote z vérifie I’équation : mz=—mg+fz

On introduit la norme de la vitesse du projectile en posant z=—v. Elle vérifie alors 1’équation : ﬂ+£ vi=

dt m 9

C’est une équation différentielle d’ordre 1 mais elle est non linéaire.
On va d’abord montrer comment on peut extraire des renseignements de 1’équation différentielle sans
chercher a la résoudre.

» On peut déterminer une solution particuliére de 1’équation qui correspond au régime stationnaire,
dv,

déterminant la vitesse limite atteinte par le projectile. Dans ce cas EZO uisqu’on cherche une

. L . m
solution particuliére constante et on obtient [v,= Fg

» On peut alors exprimer le temps caractéristique du régime transitoire ,,
amenant le point matériel de la vitesse nulle a la vitesse limite. Pour
cela, on introduit les variables adimensionnées suivantes :

v' La vitesse réduite est définie par u=-". Elle vérifie @ﬂ &uza Bg >
v, dt m m 0

08

v Le temps réduit défini par : t'=L avec =y Bﬂ "
T g 0.0

. . . du . . ‘
I’équation du mouvement devient : F+u2: 1 On peut conclure sans résolution ‘

formelle de 1’équation que la particule atteindra une vitesse de chute constante v, au bout d’un temps de I’ordre
du temps caractéristique t.

d. Résolution numérique des équations du mouvement dans le cas général.

Un programme python a disposition sur cahier de prépa permet une résolution Lancer du poids
numérique des équations du mouvement avec vitesse initiale non nulle : ’
4 On considére le lancer d’un poids de 7kg par un « beau bébé » en *
supposant qu’il le lance avec un angle initial de 45°, une vitesse initiale de 14m.s™!
et on prend un coefficient B de 1’ordre de 10°kg.m™" (estimation pour une sphére"
de rayon 10cm dans I’air).

On observe dans ce cas que les trajectoires avec et sans frottement sont quasiment
identiques, les frottements sont donc négligeables pour ce type d’étude.

—— tir sans frottement
= = tir avec frottement

v" On considére le tir d’'un volant de badminton de masse 5.10°kg par un S
joueur au fond du terrain avec un angle initial de 30°, une vitesse initiale de R A
100m.s" depuis une hauteur de 2,5m. On prend un coefficient B de I’ordre ° s KX
de 10°kg.m™. : \

On observe dans ce cas que les trajectoires avec et sans frottement sont trés * \\‘

différentes. Celle avec frottement finit en fond de terrain en face alors que celle " B

sans frottement finit a plus de 200m. 2 \|

: \
" 1
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4. Oscillations autour d’un point d’équilibre.

4.1. Masse accrochée a un ressort.

a. Ressort orienté horizontalement.
On considére un objet modélisé par un point matériel M de masse m reli¢ a un point O sur le méme axe
horizontal que M par un ressort de longueur a vide lo et de raideur k. La masse est astreinte a se déplacer sur un
axe horizontal (par exemple, a 1’aide d’une liaison glissiére).
Bilan des forces s’appliquant sur la masse :
La force de rappel élastique : ﬁe,:—k(l—lo)ﬁ

La force de gravité : P=myg

R I W, VLV

La réaction du support supposé sans frottement : R lo

‘+——»
1

On choisit une base de projection cartésienne(e,,é y,EZ) avec
u=e, Ezvertical vers le haut. On choisit pour origine spatiale le point Mo position de M lorsque le ressort n’est

pas étendu. La coordonnée x s’exprime alors : x=(1—1,)

dp -
On applique la 2LN a la masse dans le référentiel terrestre supposé galiléen. (%) =P+F_+R
R

On projette selon la direction é, 0=—mg+R,,.
On projette selon la direction &, mI=—k (I—IO) en fonction de la variable | ; m%=—k x en fonction de x.

i :
X+ 0w, x=0] avec la pulsation propre w,= -

On obtient I’équation de I’oscillateur harmonique comme équation du mouvement.

b. Ressort orienté verticalement et masse soumise a des frottements linéaires.
On considére un objet modélisé par un point matériel M de masse m relié a un point O sur le méme axe vertical
et au dessus de M par un ressort de longueur a vide lo et de raideur k. On considére que la masse se déplace
uniquement selon la direction verticale et qu’elle est soumise a une force de
frottement linéaire.
Liste des forces s’appliquant sur la masse :

La force de rappel élastique : ﬁelz—k(l—lo)ﬁ ¢ i

La force de gravité : P=myg Lo

La force de frottement linéaire : F == AV g 1 'L

On choisit une base de projection cartésienne telle que €, soit vertical vers le bas et i

pour origine spatiale le point O. L _

La 2LN dans le ref terrestre galiléen donne : (%) :l_5+1_5€,+l_5f ¥ l "
dt /g v M

On projette alors sur la direction verticale : mI=—mg—k(1—1 0 )—Al

On raméne 1’étude au mouvement autour de la position d’équilibre qui est déterminée par écriture de la condition
d’équilibre 13+139,+13f:6 ce qui améneleqzlo—%.
On introduit alors la nouvelle variable Z=I-l.,. Alors Z(t) vérifie : mZ+AZ+kZ=0

On peut mettre I’équation du mouvement autour de la position d’équilibre sous la forme canonique de

. . . s Wo - o
Poscillateur harmonique amorti sans second membre : Z +EOZ+wOZ =0

Avec la pulsation propre : w,= \/% et le facteur de qualité : Q :% vkm

4.2. Pendule simple

a. Systéme étudié.
On considére un pendule constitué d’un point matériel M de masse m relié a un point O
fixe par un fil de masse négligeable et inextensible de longueur 1.
Les forces qui s’exercent sur le point matériel sont :
Le poids P=mg La tension du fil : T
On choisit une base de projection polaire ( e,,6,,¢e y), 0 est ’angle entre la verticale vers
le bas et la direction de OM

b. Etablissement de I’équation du mouvement.

dp - o
On écrit la 2LN dans le référentiel terrestre supposé galiléen : (%) =P+T
R
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On projette selon €, : ml9?>=T  On projette selon €, : m.10=—mgsin 6

On obtient I’équation du mouvement du pendule : é+wé sinf=0 Avec la pulsation propre cw,= g

1

Cette équation différentielle n’est pas linéaire, il n’y a donc pas de résolution analytique possible.
c. Equation du mouvement aux petits angles.

On se ramene souvent a 1’étude des solutions pour des petits angles. On pose alors =0+ 6

On traduit alors les termes de 1’équation du mouvement =60 et sin0~56

On obtient alors 1’équation du mouvement de ’oscillateur harmonique § 6+w;, 8§ 6=0

5. Solide en glissement sur un plan incliné.
5.1. Systéme étudié.
On considére un skieur situé¢ sur une piste inclinée d’un angle a. On le modélise par un solide de centre
d’inertie G qu’on suppose resté en translation le long de la pente.
Le bilan des forces s’exergant sur le solide est :
e L’action a distance de la gravité terrestre.
e L’action de contact du plan sur le solide. Elle se décompose en deux composantes :
» Une composante normale perpendiculaire au plan de vecteur force N. La norme et le
point d’application de cette composante sont a déterminer en fonction du systéme.
» Une composante tangentielle, résultant des frottements entre les deux systémes, qui
s’oppose au mouvement du solide (quand il y en a un) de vecteur force T.

5.2.  Situation d’équilibre ou mise en mouvement ?
On étudie une premicre situation pour laquelle on suppose que le skieur est initialement immobile sur la
piste. Dans ce cas, les lois de la statique de Coulomb s’expriment de la maniére suivante :

» Dans la situation de non glissement du solide définie par une vitesse de glissement v qzﬁ

]_\7|| ou le

» La composante tangentielle de 1’action de contact solide vérifie la relation ||T||< fs

parametre f; est le coefficient de frottement statique.
Si cette relation n’est plus vérifiée, le solide se met en mouvement et on observe le début du glissement.

5.3. Etude du mouvement de glissement.
On ¢étudie maintenant la situation pour laquelle on suppose que le skieur est initialement immobile sur la
piste mais on sait que la condition de non glissement n’est pas respectée, il se met donc en mouvement.
Dans ce cas, les lois de la dynamique de Coulomb s’expriment de la maniére suivante :

» Dans la situation de glissement du solide pour laquelle v g¢6 ;

» La composante tangentielle de I’action de contact vérifie ||T||=f d”N || ou le parametre f; est le
coefficient de frottement dynamique.

Capacités exigibles
o Masse d’un systéme, conservation de la masse d’un systeme fermé.

o Quantité de mouvement d’un point d’un systéme de points. Lien avec le vitesse du
centre d’inertie.

o Enoncer la premiére loi de Newton ( ou principe d’inertie) comme condition
d’existence de référentiels galiléens

o Décrire le mouvement relatif de deux référentiels galiléens.

o Etablir un bilan des forces sur un systéme ou sur plusieurs systémes en interaction et
en rendre compte sur un schéma.

o Exploiter la seconde loi de Newton pour déterminer les équations du mouvement
d’un point matériel dans un référentiel galiléen.

Mener 1’étude d’un solide dans le champ de pesanteur avec ou sans frottement.
Modéliser un comportement ¢élastique par une loi de force linéaire.
Etablir I’équation du mouvement du pendule simple

© O O O

Frottements solide/solide : les lois de Coulomb ne sont pas a connaitre mais
1’étudiant doit savoir les exploiter pour résoudre un exercice
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