
Cours de physique PCSI2 2025-2026
Mouvements et interactions.

Description et paramétrage du mouvement d’un point.

Introduction.
La mécanique est la science de l’étude du mouvement des corps. Elle se décompose en deux parties :

 La  cinématique  désigne  l’ensemble  des  outils  nécessaires  pour  décrire  le  mouvement  de  manière  
formelle.

 La dynamique désigne l’ensemble des lois permettant d’étudier les causes du mouvement observé.
Il est important de bien distinguer ces deux étapes dans les études mécaniques. Elles sont aussi essentielles l’une 
que l’autre. Dans ce premier chapitre, on ne se soucie donc que de décrire le mouvement d’un système sans se  
soucier des causes de ce mouvement. 

1. Description du point de vue d’un observateur.

1.1. Relativité du mouvement.
Prenons le cas d’un passager assis dans un train lancé sur les rails à pleine vitesse entre Paris et Marseille.

 Selon le point de vue de ce passager, il est immobile par rapport au train, sa position est fixe dans le  
temps, son vecteur vitesse et son vecteur accélération sont nuls.

 Selon le point de vue d’un ruminant situé dans un champ le long de la voie ferrée, le train et, par 
conséquent, le passager sont en mouvement,  le vecteur position du passager évolue au cours du temps,  
son vecteur vitesse est non nul et son vecteur accélération peut ne pas être nul.

 Le passager  et  le  ruminant  sont  deux observateurs  qui  décrieront  le  mouvement  d’un même objet  
d’étude de manière différente car leurs points de vue sont différents. 

Conclusion     :   Le mouvement d’un objet est une notion relative au point de vue adopté, la première précaution à 
prendre dans une étude cinématique est de préciser le  point de vue adopté en spécifiant le  référentiel dans 
lequel on réalise cette description.

1.2. Définition d’un référentiel.
a. Repère.  

Définition : Un repère est la donnée d’un point O qui servira d’origine, et de trois directions fixes, définies par la 
donnée  d’un  trièdre  non  coplanaire  de  vecteurs  unitaires e⃗1 , e⃗2 , e⃗3,  fixes  du  point  de  vue  de  l’observateur 
considéré.

 La position d’un point M est alors définie dans ce repère par le vecteur position O⃗M .
 En général, on choisit le triède e⃗1 , e⃗2 , e⃗3 orthonormé et direct.

b. Horloge.  
Définition : L’horloge désigne la référence de temps utilisée par l’observateur pour décrire le mouvement. Elle  
est décrite entièrement par la donnée d’un instant de référence, l’origine des temps, et par la durée observée entre 
cet instant de référence et l’instant ou l’observateur voit un évènement survenir.

c. Référentiel.  
Définition :  Un  référentiel  permet  de  définir  le  point  de  vue  adopté  par  un  observateur  pour  décrire  un  
mouvement. Il est constitué d’un repère spatial et d’une horloge.

Dans l’exemple introductif, le référentiel pour l’observateur du train est le suivant :
 Un repère spatial ayant pour origine son siège et les trois directions fixes suivantes : une le long du 

train, une verticale et pour finir une horizontale perpendiculaire à la première.
 Sa montre avec laquelle il mesure par exemple la durée du voyage en repérant les instants de départ et  

d’arrivée.

Dans l’exemple introductif, le référentiel pour l’observateur dans le champ est le référentiel terrestre :
 Un repère spatial ayant pour origine sa position et les trois directions fixes suivantes  : une le long des 

rails, une verticale et pour finir une horizontale perpendiculaire à la première.
 Sa montre avec laquelle il mesure par exemple les instants de passage de la tête du train et de la queue  

du train en face de sa position.

1.3. Postulat de la mécanique classique.

Enoncé     : Les horloges de deux référentiels différents mesurent des durées égales.
Ce principe de la mécanique classique est né de l’observation de mouvements qui étaient accessibles à l’époque 
où il a été formulé :

 Par exemple, pour notre train, la durée du voyage sera la même pour un observateur dans le train et un 
observateur dans le référentiel terrestre. 
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En 1905, Albert Einstein a exposé dans un article la théorie de la mécanique relativiste. Son objectif était de  
définir  une nouvelle théorie de la mécanique qui soit  compatible avec la théorie de l’électromagnétisme de 
Maxwell.
Dans cette théorie, les durées mesurées entre deux évènements dépendent de l’observateur considéré :

 Du point de vue d’un observateur fixe dans le référentiel d’étude, on mesure une durée T pour le temps  
de parcours d’une longueur L par une particule se déplaçant en ligne droite à une vitesse v par rapport 
au référentiel d’étude.

 Du point de vue de la particule, on mesure une durée T’.

La relation liant T et T’ est alors la suivante :  T=T '(1−( v
c )

2

)−
1
2 , on constate donc que T>T’. On appelle ce 

phénomène  « dilatation du temps ».
Par exemple : On considère un proton participant au rayonnement cosmique. Il entre en collision avec un atome 
des couches hautes de l’atmosphère terrestre, ce qui génère un muon à une altitude de l’ordre de 30km.
Ce muon est  une particule élémentaire présentant  une vitesse proche de la  lumière,  elle  met  donc,  dans le  
référentiel terrestre une durée de 10-4s pour atteindre la surface de la planète.
Le muon est une particule qui présente une durée de ½ vie de 2.10-6s, sur cette durée la moitié d’une population 
de muons générés à haute altitude se serait dissociée. Le rapport entre le temps de transit et la durée de vie  
entrainerait une population de muons à la surface terrestre qui serait divisé par 250, on en capterait très peu.
L’observation est tout autre, elle est beaucoup plus cohérente avec une population divisée par 2 8 ce qui suggère 
que le temps vu par la particule lors de ce trajet est de l’ordre de 3 fois la durée de vie. On peut en déduire que la  
vitesse du muon est de l’ordre de 99,8% de la vitesse de la lumière.

Conclusion : Le postulat d’invariance des horloges lors d’un changement de référentiel est une approximation 
qu’on jugera valide dans la plupart des études menées cette année. Cette approximation est plus généralement  
valable dès lors que les vitesses des objets étudiés respectent v<c/10. 

2. Description du mouvement d’un point.

2.1. Éléments de description.
a. Vecteur position.  

Définition : La description du mouvement d’un point M dans un référentiel passe par la donnée du vecteur 
position O⃗Mde ce point à chaque instant t. On dit que l’on définit alors la trajectoire du mouvement.

b. Vecteur vitesse.  
Définition : Le  vecteur  vitesse v⃗M , R d’un  point  dans  un  référentiel  R  est  la  dérivée 

temporelle du vecteur position dans ce référentiel : v⃗M , R=(d O⃗M
dt )

R

Propriété : Le vecteur vitesse est tangent à la trajectoire du point M et est dirigé dans le 
sens du mouvement.

c. Vecteur accélération.  
Définition     : Le vecteur accélérationa⃗M , R d’un point dans un référentiel R est la dérivée temporelle du vecteur 

vitesse dans ce référentiel : a⃗M , R=(d v⃗M , R

dt )
R

=(d2O⃗M

dt 2 )
R

Si on exprime la vitesse sous la forme suivante  v⃗M , R=‖v⃗M , R‖u⃗M , R 

Alors l’accélération s’écrit sous la forme : a⃗M , R=( d‖v⃗M , R‖
dt )

R .

u⃗M , R+ v⃗M , R

d u⃗M , R

dt
. 

Elle est composée :

 d’une accélération tangentielle : a⃗M , R ,T=(d‖v⃗M , R‖
dt )

R .

u⃗M , R dont la norme est la dérivée par rapport au 

temps de la norme de la vitesse.

 d’une accélération normale :  a⃗M , R , N= v⃗M , R

d u⃗M , R

dt
dont la norme est proportionnelle à la vitesse et à la 

dérivée par rapport au temps du vecteur unitaire donnant la direction et le sens de la vitesse.
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2.2. La base de projection cartésienne.

Définition     :  La  base  cartésienne désigne  un trièdre  orthonormé direct  de 
vecteurs généralement désignés par e⃗ x , e⃗ y , e⃗ z  désignant trois directions fixes 
dans le référentiel d’étude. Les coordonnées dans cette base de projection 
sont définies par : O⃗M=x e⃗ x+ y e⃗ y+ z e⃗ z

avec x= e⃗ x .O⃗M  ; y= e⃗ y .O⃗M  ; z= e⃗ z .O⃗M

Expression du vecteur déplacement élémentaire.
Le  petit  vecteur  déplacement  s’exprime  directement  à  partir  des  petites 
variations des trois coordonnées : d O⃗M=dx e⃗x+dy e⃗ y+dz e⃗ z

Vecteur  vitesse :  on  dérive  le  vecteur  position  exprimé  dans  la  base 
cartésienne par rapport au temps :

(d O⃗M
dt )

R

=dx
dt

e⃗ x+
dy
dt

e⃗ y+
dz
dt

e⃗ z= ẋ . e⃗ x+ ẏ . e⃗ y+ ż . e⃗ z

Vecteur accélération : on dérive le vecteur vitesse exprimé dans la base cartésienne par rapport au temps :

(d . v⃗M /R

dt )
R

=d2 x

dt 2 e⃗ x+
d2 y

dt 2 e⃗ y+
d2 z

dt 2 e⃗ z= ẍ . e⃗ x+ ÿ . e⃗ y+ z̈ . e⃗ z

Surfaces élémentaires et volume élémentaire     :
La surface élémentaire de vecteur unitaire normal e⃗ x s’exprime d S⃗ x=dydz e⃗ x

La surface élémentaire de vecteur unitaire normal e⃗ y s’exprime d S⃗ y=dxdz e⃗ y

La surface élémentaire de vecteur unitaire normal e⃗ z s’exprime d S⃗ z=dxdy e⃗ z

Le volume élémentaire en coordonnées carrtésienne s’exprime dV =dxdydz

2.3. La base de projection cylindro-polaire.

Définition     :  La  base  cylindrique,  encore  appelée  cylindro-polaire, 
désigne un trièdre orthonormé direct de vecteurs généralement désignés 
par ( e⃗ r , e⃗θ , e⃗ z ),  e⃗ r , e⃗θ dépendant du paramètre angulaire θ décrivant la 
position  du  point  étudié  et  e⃗ zdésignant  une  direction  fixe  dans  le 
référentiel d’étude. Les coordonnées dans cette base de projection sont 
(r ,θ , z ). 
Le vecteur position s’exprime alors:O⃗M=r e⃗ r+ z e⃗ z.

Expression du vecteur déplacement élémentaire.
Si  on considère un déplacement élémentaired O⃗M au départ du point : 
O⃗M=r e⃗r+ z e⃗ z  

On peut l’exprimer : d O⃗M=dr . e⃗r+rd θ . e⃗θ+dz e⃗z

Propriété     :   Les vecteurs  e⃗r , e⃗θ  dépendent du point M considéré plus particulièrement de l’angle θ, on peut 

exprimer les variations de ces vecteurs de la base lorsque le point M change par : 
d e⃗ r

dθ
= e⃗θ ; 

d e⃗θ

dθ
=− e⃗ r. 

Vecteur vitesse.
On dérive le vecteur position exprimé dans la base cylindro-polaire par rapport au temps :

(d O⃗M
dt )

R

=(d r e⃗ r

dt )
R

+(d z e⃗ z

dt )
R

=ṙ e⃗ r+r(d e⃗ r

dt )
R

+ ż e⃗ z=ṙ e⃗ r+r θ̇ e⃗θ+ ż e⃗ z

Vecteur accélération.
On dérive le vecteur vitesse exprimé dans la base cylindropolaire par rapport au temps :

(d v⃗M , R

dt )
R

=(d ṙ e⃗ r

dt )
R

+(d r θ̇ e⃗θ

dt )
R

+(d ż e⃗ z

dt )
R

=( r̈ e⃗ r+ ṙ θ̇ e⃗θ)+( ṙ θ̇ e⃗θ+r θ̈ e⃗θ−r θ̇2 e⃗ r )+ ż e⃗ z

Finalement :(d v⃗M , R

dt )
R

=( r̈−r θ̇2) e⃗ r+(2 ṙ θ̇+r θ̈ ) e⃗θ+ ż e⃗ z

Surfaces élémentaires et volume élémentaire     :
La surface élémentaire de vecteur unitaire normal e⃗ r s’exprime d S⃗r=(r d θ)dz e⃗ r

La surface élémentaire de vecteur unitaire normal e⃗θ s’exprime d S⃗θ=drdz e⃗θ

La surface élémentaire de vecteur unitaire normal e⃗ z s’exprime d S⃗ z=dr (r d θ) e⃗ z

Le volume élémentaire en coordonnées carrtésiennes s’exprime dV =dr (r d θ)dz
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2.4. Coordonnées sphériques.

Définition     : La base sphérique désigne un trièdre orthonormé direct de 
vecteurs généralement désignés par ( e⃗ r , e⃗θ , e⃗φ) . Les trois vecteurs sont 
dépendants du point considéré. Les coordonnées dans cette base de 
projection sont (r ,θ ,φ ) . 
Le vecteur position s’exprime sous la forme :O⃗M=r e⃗ r . 

Expression du vecteur déplacement élémentaire.
Si on considère un déplacement élémentaired O⃗Mau départ du point :
O⃗M=r e⃗ r 

On peut l’exprimer :d O⃗M=dr . e⃗r+rd θ . e⃗θ+r sin θ d φ e⃗φ

Vecteur vitesse.
Il  est  difficile  d’exprimer les  dérivées des vecteurs unitaires dans cette  base.  On peut  cependant  trouver le 
vecteur vitesse assez simplement à partir de l’expression du petit vecteur déplacement.
On obtient : v⃗M /R=ṙ . e⃗ r+r θ̇ . e⃗θ+r φ̇ sin θ . e⃗φ

Vecteur accélération.
On donne juste ici son expression, elle n’est pas à retenir !!!!
a⃗M /R=( r̈−r θ̇2−r sin2 θ φ̇2) e⃗ r+(r θ̈+2 ṙ θ̇−r φ̇2 sin θ cosθ ) e⃗θ+(r sin θ φ̈+2 ṙ φ̇ sin θ+2r θ̇ φ̇ cosθ ) . e⃗φ

Surfaces élémentaires et volume élémentaire     :
La surface élémentaire de vecteur unitaire normal e⃗ r s’exprime d S⃗r=(r d θ)(r sin θ d φ) e⃗ r

La surface élémentaire de vecteur unitaire normal e⃗θ s’exprime d S⃗θ=dr (r sin θ d φ) e⃗θ

La surface élémentaire de vecteur unitaire normal e⃗φ s’exprime d S⃗φ=dr (r d θ) e⃗φ

Le volume élémentaire en coordonnées carrtésienne s’exprime dV =dr (r d θ)(r sin θ d φ)

3. Choix d’une base adaptée pour l’étude d’un mouvement.

3.1. Mouvement à accélération constante.
L’étude du mouvement d’une balle dans le référentiel terrestre fourni un bon 
exemple  de  mouvement  à  accélération  constante,  puisque  dans  un  modèle 
simple, ce système évolue dans le champ de pesanteur terrestre qui impose une 
accélération a⃗M /R= g⃗ où g⃗ est le vecteur accélération de la pesanteur à la surface 
de la planète.
on suppose qu’à l’instant initial : v⃗M /R(t=0)=vOx e⃗ x+vOz e⃗ z et O⃗M (t=0)=h e⃗ z

L’étude théorique de tout mouvement commence par les choix suivants :
 Le référentiel dans lequel on effectue la description du mouvement. On choisit ici de manière évidente 

le référentiel du laboratoire (ou le référentiel terrestre local).
 La base de projection la plus adaptée à l’étude du mouvement considéré. Ici, on a deux éléments qui 

guident notre choix :
 Le vecteur accélération constant qui introduit une direction verticale privilégiée
 Le  vecteur  vitesse  initiale  qui  présente  une  composante  horizontale  et  une  composante 

verticale.
On a deux directions fixes qui se dégagent de la description du système, on s’oriente vers une base de  
projection cartésienne s’appuyant sur ces deux directions.
Le vecteur accélération dans la base choisie s’écrit alors a⃗M /R=−g e⃗ z.
Par projection dans la base cartésienne, on obtient : ax=0    et   az=−g

Les composantes de la vitesse vérifient alors 
dv x

dt
=ax=0    et   

dv z

dt
=az=−g

On intègre en tenant compte des conditions initiales :v x (t )=vOx    et   v z(t )=vOz−g t

Les composantes du vecteur position vérifient alors
dx
dt

=vOx    et   
dz
dt

=vOz−g t   

On intègre en tenant compte des conditions initiales : x (t )=vOx t    et   v z(t )=h+vOz t−
g
2

t2

On peut déterminer la trajectoire du point étudié dans le plan (O , e⃗ x , e⃗ z ) en déterminant z(x) :

 Ici on peut simplement exprimer le temps en fonction de x ce qui donne. t= x
vOx

 

Puis en réintroduisant dans l’expression de la cote z (x )=h+
vOz

vOx

x− g

2 vOz
2

x2qui est l’équation d’une parabole.
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3.2. Etude du mouvement circulaire.
a. Etude du mouvement circulaire à vitesse constante.  

On considère  une barre tournant  autour d’un axe fixe et  par  rapport  à  laquelle  elle  est  équilibrée.  On doit  
effectuer un choix adapté de la base de projection pour mener l’étude de ce mouvement.

On identifie ici une trajectoire circulaire de centre O le centre de la barre qui est fixe dans le référentiel  
d’étude. La base de projection polaire( e⃗ r , e⃗θ) dans le plan du mouvement, complétée éventuellement en 
base de projection cylindrique avec un vecteur « axial » en( e⃗ r , e⃗θ , e⃗ z).

Dans cette base de projection, le vecteur position est O⃗M=a e⃗r

La vitesse de rotation est constante,  on la note souvent  θ̇=ω.Le vecteur vitesse 

s’exprime alors :v⃗M /R=( d O⃗M
dt )

R

=a( d e⃗ r

dt )
R

=a ω e⃗θ=vO e⃗θ

 Où vO la vitesse du point matériel sur le cercle est donc proportionnelle au rayon et 
à  la  vitesse  de  rotation  ω.  Il  reste  à  déterminer  le  vecteur  accélération : 

a⃗M /R=(d v⃗M /R

dt )
R

=a ω(d e⃗θ

dt )
R

=−a ω2 e⃗ r=
vO

2

a
e⃗ r.

L’accélération est centripète (dirigée vers le centre de la trajectoire circulaire) et 
elle varie en fonction du carré de la vitesse et en inverse du rayon. 
Ces caractéristiques sont assez intuitives pour tout conducteur ou passager d’une voiture.

b. Etude du mouvement circulaire à vitesse variable.  
Pour illustrer ce type de système, on va étudier le mouvement d’un pendule simple dans  
le plan vertical (O , e⃗ z , e⃗ x )
La trajectoire est circulaire de centre O fixe dans le référentiel, on utilise toujours un  
base (cylindro-)polaire ( e⃗ r , e⃗θ , e⃗ y):

Vecteur position  O⃗M=l e⃗ r Vecteur vitesse v⃗M /R=l(d e⃗ r

dt )
R

=l θ̇ e⃗θ=v e⃗θ.

Vecteur accélération a⃗M /R=l θ̈ e⃗θ+l θ̇(d e⃗θ

dt )
R

=l θ̈ e⃗θ−l θ̇2 e⃗ r=v̇ e⃗θ−
v2

l
e⃗θ

On retrouve la même composante centripète de l’accélération dirigée vers le centre du 
mouvement circulaire, on voit apparaître une nouvelle composante ortho radiale liée aux variations de la vitesse 
angulaire du mouvement circulaire.

3.3. Repère de Frenet pour une trajectoire plane connue.
Le repère de Frenet permet d’effectuer une généralisation 
à toutes les trajectoires planes des observations faites sur 
la trajectoire circulaire lorsqu’on introduit la vitesse du 
point  le  long  de  la  trajectoire  circulaire  dans  les 
expressions des éléments de cinématique.

On considère une trajectoire plane quelconque qu’on 
désignera par la suite par Γ.

 Le premier élément introduit est l’élément qui 
repère la position du point M le long de la trajectoire.  Puisque la trajectoire est imposée, il suffit de 
donner la distance parcourue par ce point depuis un point de référence noté ici MO.  On nomme ce 
paramètre  abscisse  curviligne  et  on  le  note  généralement  s(t).  Son  expression  mathématique  est 

alors s(t )= ∫
MO→

Γ
M (t )

ds où ds désigne la distance élémentaire parcourue le long de Γ par le point M.

 En un point M(t) de la trajectoire, on peut alors introduire u⃗T  le vecteur unitaire tangent à la trajectoire 
orienté dans le sens de parcours de la trajectoire. Le vecteur déplacement élémentaire du point M est  
alors exprimé facilement par d M⃗O M (t )=ds u⃗T

La vitesse du point M le long de la trajectoire est alors v⃗M /R=
d M⃗O M

dt
= ṡ u⃗T=v u⃗T  

Ce qui rappelle la forme v⃗M /R=v e⃗θ de la trajectoire circulaire

On peut exprimer l’accélération au point M sous la forme a⃗M /R= s̈ u⃗T+ ṡ
d u⃗T

dt
=v̇ u⃗T+v

d u⃗T

dt

Ce qui rappelle la forme a⃗M /R=v̇ e⃗θ−
v2

l
e⃗θ
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 On introduit le vecteur unitaire  u⃗N  et le rayon de courbure ρ(M) de la trajectoire en M(t) tels que la 
trajectoire s’approxime par le cercle tangent de rayon ρ(M) et dont le centre est pointé par u⃗N

L’accélération dans le repère de Frenet s’exprime : a⃗M /R=v̇ u⃗T+
v2

ρ
u⃗N

A propos des bases orthonormées directes.
Règles pour construire un trièdre direct de vecteurs (ou pour vérifier le sens direct 
d’un trièdre).

 Les trois doigts     de la main droite   :  aligné sur le pouce tendu dans le 

plan de la paume,  aligné sur l’index dans le plan de la paume, alors 

aligné sur le majeur dressé perpendiculairement à la paume.
Base orthonormée directe     :  

Une base orthonormée directe  est un trièdre dont chaque vecteur est 

de norme unitaire, chaque couple de vecteur est de produit scalaire nul (on dit encore qu’ils sont orthogonaux 
deux à deux), et de sens direct.

Capacités exigibles
o Savoir que le mouvement est relatif à un référentiel.
o Citer une situation ou la description classique de l’espace ou du temps est prise en 

défaut.
o Définir les vecteurs position, vitesse et accélération d’un point 
o Exprimer  à  partir  d’un  schéma  le  déplacement  élémentaire  dans  les  différents 

systèmes  de  coordonnées,  construire  le  trièdre  local  associé  et  en  déduire 
géométriquement les composantes du vecteur vitesse en coordonnées cartésiennes et 
cylindriques.

o Etablir  les  expressions  des  composantes  des  vecteurs  position,  déplacement 
élémentaire, vitesse et accélération dans les seuls cas des coordonnées cartésiennes et 
cylindriques.

o Identifier les degrés de liberté d’un mouvement. Choisir un système de coordonnées 
adapté à la situation étudiée.

o Dans le cas d’un mouvement uniformément accéléré, exprimer les vecteurs vitesse et 
position  en  fonction  du  temps.  Etablir  l’équation  de  la  trajectoire  en  coordonnées 
cartésiennes.

o Dans  le  cas  d’un  mouvement  circulaire  uniforme  ou  non  uniforme :  Exprimer  les 
composantes  du  vecteur  position,  du  vecteur  vitesse  et  du  vecteur  accélération  en 
coordonnées polaires planes.

o Repérage  d’un  point  dont  la  trajectoire  est  connue,  repère  de  Frenet :  Situer 
qualitativement  la  direction  du  vecteur  vitesse  et  du  vecteur  accélération  pour  une 
trajectoire plane. Exploiter les liens entre les composantes du vecteur accélération, la 
courbure de la trajectoire, la norme du vecteur vitesse et sa variation temporelle.
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Lois de Newton.

Introduction.
On a vu dans le chapitre précédent les outils permettant de décrire le mouvement d’un point ou d’un solide. On  
va maintenant s’attacher à l’étude des causes du mouvement et des principes posés et exploités en dynamique 
pour en déduire le mouvement d’un système.

1. Éléments d’inertie d’un système mécanique.

1.1. Masse inertielle et quantité de mouvement d’un point.

a. Masse inertielle.  
Dans le chapitre précédent, on a introduit les éléments nécessaires à la description du mouvement d’un point ou 
d’un solide (dans quelques cas simples), mais il ne suffit pas de connaître le mouvement du système étudié pour 
faire le lien avec les causes de ce mouvement :

 Pour attraper une balle de tennis lancé à une vitesse v, il suffit en général d’être relativement habile (et  
que le lanceur le soit aussi).

 Si on remplace la balle de tennis par une boule de pétanque, il est en général conseillé d’être également 
relativement costaux.

Définition : L’inertie d’un système mécanique mesure la capacité de ce dernier à s’opposer à la modification de 
son mouvement.

b. Modèle du point matériel.  

Définition : La  masse  (inertielle)  d’un  système  mécanique  Σ,  souvent  notée  mΣ,  est  une  grandeur  scalaire 
mesurant l’inertie d’un système relativement à son mouvement global de translation. Elle s’exprime en kg.

Modèle du point matériel     : Le modèle du point matériel revient à réduire la description d’un système à un point 
auquel on attribue la masse totale du système.
Définition     :   Pour un point matériel M de masse m et de vitesse dans le référentiel R v⃗M /R, on définit la quantité 
de mouvement p⃗M /R comme le produit de la masse par le vecteur vitesse : p⃗M /R=m v⃗M /R

1.2. Centre d’inertie et quantité de mouvement d’un système.

a. Quantité de mouvement.  
Définition : Pour un système étendu, la masse et la quantité de mouvement totale du système sont la somme des  
masses et des quantités de mouvement de l’ensemble des parties du système.
Pour une répartition de points matériels donnée par :{M i ,mi} i∈ [1 , N ], 

La masse totale est mΣ=∑
i=1

N

mi  ; la quantité de mouvement totale est exprimée par : p⃗Σ , R=∑
i=1

N

mi v⃗ i , R

b. Centre d’inertie.  

Définition : Pour un système matériel Σ étendu, on définit le centre d’inertie G du système comme le barycentre 
de la répartition de masse du système. Pour une répartition de points matériels donnée par :{M i ,mi} i∈ [1 , N ], 

le vecteur position du centre d’inertie G est donnée par : mΣ O⃗G=∑
i=1

N

mi O⃗M i

Propriété : Pour un système étendu de masse totale mΣ et de centre d’inertie G, la quantité de mouvement totale 
du système dans le référentiel R peut s’écrire sous la forme : p⃗Σ , R=mΣ v⃗G /R

Démonstration : On peut partir de la définition du centre d’inertie G : mΣ O⃗G=∑
i=1

N

mi O⃗M i

On dérive alors cette relation par rapport au temps dans le référentiel d’étude R : 

d
dt (mΣ O⃗G)=mΣ v⃗G /R et 

d
dt (∑i=1

N

mi O⃗M i)R
=∑

i=1

N

mi v⃗ i , R= p⃗M /R, on obtient bien p⃗Σ , R=mΣ v⃗G /R.

Propriété : En appliquant le modèle du point matériel à un objet étendu, on étudie en fait le mouvement de 
translation du centre d’inertie du système étudié.
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2. Les lois de Newton, ou les principes de la mécanique newtonienne.

2.1. Première loi de Newton (ou principe d’inertie).

Enoncé : Il existe des référentiels, dits galiléens, pour lesquels le mouvement d’un point matériel isolé est une 
translation rectiligne uniforme.

 Une translation rectiligne uniforme est un mouvement de vecteur vitesse constant.
 Un point matériel isolé n’est soumis à aucune action mécanique.
 La mécanique Newtonienne (ou classique) postule donc l’existence de référentiels galiléens.

Cette année, les référentiels d’études seront supposés galiléens. Par exemple le référentiel terrestre n’est pas  
parfaitement galiléen mais l’hypothèse reste raisonnable pour la plupart des systèmes étudiés.

 Mouvement relatifs de deux référentiels galiléens :

Si on suppose que deux référentiels R1 et R2 sont galiléens, les vecteurs vitesses v⃗M /R1
 et v⃗M /R2

 d’un point matériel 

isolé sont constants dans chacun des référentiels.
 v⃗M /R1

 est de direction fixe dans R1. R2 ne peut pas être en rotation par rapport à R1 puisque dans ce cas la 

direction du vecteur vitesse du point M étudié serait variable dans R2. Par conséquent, R1 et R2 sont en translation 
l’un par rapport à l’autre, c’est-à-dire qu’ils partagent le même système d’axe  e⃗1 , e⃗2 , e⃗3. Il reste à étudier le 
mouvement relatif de leurs origines.

En reprenant l’expression de la vitesse dans le référentiel R1 :v⃗M /R1
=( d O⃗1 M

dt )
R1

=( d O⃗1O2

dt )
R1

+( d O⃗2 M

dt )
R1

 

qu’on traduit v⃗M /R1
= v⃗O2 /R1

+ v⃗M /R2
 et on en conclut que v⃗O2

/R1 est constant.

Conclusion     : Deux référentiels galiléens sont en translation rectiligne uniforme l’un par rapport à l’autre.

2.2. Actions mécaniques. Troisième loi de Newton.
a. Définitions.  

Définition d’une action mécanique : La notion d’action mécanique regroupe tous les phénomènes susceptibles 
de mettre en mouvement un objet (ou de le déformer si c’est possible).
Actions mécaniques sur un point matériel     :  
Lorsqu’on considère un point matériel M, l’action mécanique exercée par un système extérieur S sur le point M 
est décrite par un vecteur nommé vecteur force et généralement noté F⃗S→M . Sa norme s’exprime en Newton (N).

Actions mécaniques sur un système matériel     :  
Lorsqu’on considère un système matériel Σ, on pourra définir une action mécanique en précisant le vecteur force 
qui lui est associé et sur quelle sous partie du système elle s’applique. On reviendra sur ce point quand on 
étudiera le mouvement d’un solide à la fin de cette séquence de mécanique.

b. Troisième loi de Newton, principe des actions réciproques.  

Soient deux points matériels M1 et M2. On note F⃗1→2 la force exercée par M1 sur M2, et F⃗2→1 la force exercée par 
M2 sur M1. Le principe des actions réciproques affirme que ces deux forces sont de même direction que l’axe  
(M1M2) , de même normes et de sens opposés. F⃗2→1=−F⃗1→2 ; F⃗1→2∧⃗M 1 M 2=0⃗

Exemple :  La force exercée par une personne sur la terre est de même intensité que celle exercée par la terre sur 
cette personne. Pour la personne, cette force est importante car sa masse est petite, pour la terre, elle est ridicule 
car sa masse est énorme.

c. Application     : tension d’un fil idéal.  

On considère un fil tendu entre deux points A et B, et M un point le long du fil.
La tension T⃗ 1→2du fil est la force exercée par la partie du fil d’un coté de M (1) sur l’autre partie du fil (2). La 

tension T⃗ 1→2est orientée de (2) vers (1).

 Le principe d’action réaction affirme que en un point M le long du fil : T⃗ 2→1=−T⃗ 1→2.
 Pour un fil idéal, c’est-à-dire de masse négligeable et inextensible, on montre que les tensions exercées  

par le fil sur les points A et B sont opposés.
 Pour un fil et une poulie idéale, poulie de masse négligeable et le fil ne glissant pas sur la poulie, on 

montre alors que les tensions exercées par le fil sur les points A et B sont de même norme.
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2.3. Seconde loi de Newton (ou principe fondamental de la dynamique ou loi de 
la quantité de mouvement).

Enoncé : Dans un référentiel galiléen, la quantité de mouvement du point matériel M de masse m est reliée à  

l’ensemble des forces exercées sur ce point par l’équation : (d p⃗M /R

dt )
R

=∑ F⃗→M

Pour un système mécanique plus complexe qu’un point matériel, le principe fondamental de la dynamique se 

traduit simplement par : (d p⃗Σ /R

dt )
R

=∑ F⃗→Σ

Pour un système fermé de masse constante et de centre d’inertie G (d p⃗Σ /R

dt )
R

=mΣ a⃗G /R=∑ F⃗→Σ

3. Mouvement dans le champ de pesanteur terrestre uniforme.
On considère un projectile modélisé par un point matériel M de masse m dans le champ de pesanteur terrestre. 
On se place dans le référentiel terrestre R supposé galiléen.

On utilise une base de projection cartésienne  ( e⃗ x , e⃗ y , e⃗ z ) avec  ( e⃗ z ) vertical vers le haut et le vecteur vitesse à 

l’instant initialv⃗O dans le  plan ( e⃗ x , e⃗ z ).
Le bilan des actions mécaniques s’exerçant sur le projectile est :

 L’action mécanique de la gravité terrestre s’exerce à distance en tout point du solide et peut être 
modélisée comme une force de vecteur  P⃗=m g⃗ qui s’applique au centre d’inertie du système, qu’on 
appelle souvent le « poids ».

 L’action mécanique de l’air sur le solide est une action de contact. Elle peut être modélisée par deux 
composantes :

 La poussée d’Archimède qui résulte des forces de pression exercé par le fluide entourant le  
solide.  Elle est modélisable par une force s’appliquant au centre de masse du solide et de  
vecteur A⃗=−mD g⃗ où mD est la masse de fluide déplacée par le solide.

 Une trainée qui résulte des frottements engendrés par le mouvement du solide dans le fluide et  
qui s’oppose à ce mouvement. On la modélise par un vecteur force s’appliquant au centre  
d’inertie, de même direction mais de sens opposé au vecteur vitesse. L’expression de sa norme 
fait l’objet de plusieurs modélisations possibles.

3.1. Étude en négligeant les frottements.
a. Bilan des forces.  

La liste des forces s’exerçant sur le projectile est :
 Le poids du projectile : P⃗=m g⃗
 On néglige toutes forces de frottement et on supposera que la poussée d’Archimède est négligeable.

b. Application de la seconde loi de Newton.  

Dans le référentiel terrestre supposé galiléen, la seconde loi de Newton s’énonce : (d p⃗M /R

dt )
R
=P⃗

Ce qui amène à : a⃗M /R= g⃗ On tombe sur le mouvement à accélération constante du cours de cinématique.

3.2. Étude en appliquant un modèle de frottement linéaire.
La force de frottement fluide linéaire est un bon modèle dans le cas où l’écoulement de l’air autour du projectile  
présente un caractère laminaire, ce qui est le cas pour de faibles vitesses du projectile par rapport au fluide.

a. Bilan des forces.  
La liste des forces s’exerçant sur le projectile est :

 Le poids du projectile : P⃗=m g⃗
 La force de frottement linéaire exprimée par : f⃗ =−α v⃗M /R.
 On néglige encore ici la poussée d’Archimède.

b. Application de la loi de la quantité de mouvement.  

On applique la loi seconde loi de Newton dans le référentiel terrestre supposé galiléen :(d p⃗M /R

dt )
R

=P⃗−α v⃗M /R

On la projette sur les vecteurs de la base : m . ẍ=−α ẋ m .a y=0 m z̈=−mg−α ż

On obtient ici les équations du mouvement pour le projectile.

c. Résolution des lois du mouvement obtenues.   (A faire en direct)
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3.3. Etude en appliquant un modèle de frottement quadratique.
La force de frottement fluide quadratique est un bon modèle dans le cas où l’écoulement de l’air autour du 
projectile présente un caractère turbulent, ce qui est le cas pour de grandes vitesses du projectile par rapport au  
fluide dans lequel il évolue.

a. Bilan des forces.  
La liste des forces s’exerçant sur le projectile est :

 Le poids du projectile : P⃗=m g⃗
 La force de frottement linéaire exprimée par : f⃗ =−β‖v⃗M /R‖v⃗M /R.

b. Application de la loi de la quantité de mouvement.  

Loi de la quantité de mouvement dans le référentiel terrestre supposé galiléen : (d p⃗M /R

dt )
R

=P⃗−β‖v⃗M /R‖v⃗M /R

On la projette sur les vecteurs de la base pour obtenir les équations du mouvement : 

m ẍ=−β √ ẋ2+ ż2 ẋ m .a y=0 m z̈=−mg−β √ ẋ2+ ż2 ż

On obtient  un  système  d’équations  couplées  et  non  linéaires.  Il  est  impossible  d’en  extraire  des  solutions 
analytiques dans le cas général.

c. Cas particulier de la chute libre sans vitesse initiale.  
On s’intéresse maintenant à un sous cas de l’étude précédente où le système est lâché sans vitesse initiale. On se 

ramène alors à une étude à une dimension où la cote z vérifie l’équation : m z̈=−mg+β ż2 

On introduit la norme de la vitesse du projectile en posant ż=−v . Elle vérifie alors l’équation : 
dv
dt

+ β
m

v2=g

C’est une équation différentielle d’ordre 1 mais elle est non linéaire.
On va d’abord montrer comment on peut extraire des renseignements de l’équation différentielle sans 
chercher à la résoudre.

 On peut  déterminer  une  solution  particulière  de  l’équation  qui  correspond  au  régime  stationnaire, 

déterminant  la  vitesse  limite  atteinte  par  le  projectile.  Dans  ce  cas  
dv l

dt
=0puisqu’on  cherche  une 

solution particulière constante et on obtient v l=√ mg
β

 On peut alors exprimer le temps caractéristique du régime transitoire 
amenant le point matériel de la vitesse nulle à la vitesse limite. Pour 
cela, on  introduit les variables adimensionnées suivantes :

 La vitesse réduite est définie par u= v
vl

. Elle vérifie 
du
dt

+√ βg
m

u2=√ βg
m

 Le temps réduit défini par : t '= t
τ

avec τ=√ m
βg

l’équation du mouvement devient : 
du
dt '

+u2=1 On peut conclure sans résolution 

formelle de l’équation que la particule atteindra une vitesse de chute constante vl au bout d’un temps de l’ordre 
du temps caractéristique τ.

d. Résolution numérique des équations du mouvement dans le cas général.  
Un programme python à disposition sur cahier de prépa permet une résolution 
numérique des équations du mouvement avec vitesse initiale non nulle :
 On considère le lancer d’un poids de 7kg par un « beau bébé » en 
supposant qu’il le lance avec un angle initial de 45°, une vitesse initiale de 14m.s -1 

et on prend un coefficient β de l’ordre de 10-3kg.m-1 (estimation pour une sphère 
de rayon 10cm dans l’air).
On observe dans ce cas que les trajectoires avec et sans frottement sont quasiment 
identiques, les frottements sont donc négligeables pour ce type d’étude.
 On considère  le  tir  d’un volant  de badminton de masse 5.10-3kg par  un 

joueur au fond du terrain avec un angle initial de 30°, une vitesse initiale de 
100m.s-1 depuis une hauteur de 2,5m. On prend un coefficient β de l’ordre 
de 10-3kg.m-1.

On observe dans ce cas que les trajectoires avec et sans frottement sont très 
différentes. Celle avec frottement finit en fond de terrain en face alors que celle  
sans frottement finit à plus de 200m.
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4. Oscillations autour d’un point d’équilibre.

4.1. Masse accrochée à un ressort.
a. Ressort orienté horizontalement.  

On considère un objet  modélisé par  un point  matériel  M de masse m relié  à  un point  O sur  le  même axe 
horizontal que M par un ressort de longueur à vide lO et de raideur k. La masse est astreinte à se déplacer sur un 
axe horizontal (par exemple, à l’aide d’une liaison glissière).
Bilan des forces s’appliquant sur la masse :
La force de rappel élastique : F⃗ el=−k ( l−lO ) u⃗

La force de gravité : P⃗=m g⃗
La réaction du support supposé sans frottement : R⃗

On choisit  une  base de  projection cartésienne( e⃗ x , e⃗ y , e⃗ z ) avec
u⃗= e⃗ x, e⃗ zvertical vers le haut. On choisit pour origine spatiale le point MO position de M lorsque le ressort n’est 

pas étendu. La coordonnée x s’exprime alors : x=( l−lO )

On applique la 2LN à la masse dans le référentiel terrestre supposé galiléen. (d p⃗M /R

dt )
R

=P⃗+ F⃗el+ R⃗

On projette selon la direction e⃗ z 0=−mg+RZ.
On projette selon la direction e⃗ x m l̈=−k (l−lO ) en fonction de la variable l ; m ẍ=−k x en fonction de x.

ẍ+ωO
2 x=0  avec la pulsation propre ωO=√ k

m
On obtient l’équation de l’oscillateur harmonique comme équation du mouvement.

b. Ressort orienté verticalement et masse soumise à des frottements linéaires.  
On considère un objet modélisé par un point matériel M de masse m relié à un point O sur le même axe vertical  
et au dessus de M par un ressort de longueur à vide lO et de raideur k. On considère que la masse se déplace 
uniquement  selon  la  direction  verticale  et  qu’elle  est  soumise  à  une  force  de 
frottement linéaire.
Liste des forces s’appliquant sur la masse :
La force de rappel élastique : F⃗ el=−k ( l−lO ) u⃗

La force de gravité : P⃗=m g⃗
La force de frottement linéaire : F⃗ f=−λ v⃗M /R

On choisit une base de projection cartésienne telle que e⃗ z soit vertical vers le bas et 
pour origine spatiale le point O.

La 2LN dans le ref terrestre galiléen donne  : (d p⃗M /R

dt )
R

=P⃗+ F⃗ el+ F⃗ f

On projette alors sur la direction verticale : m l̈=−mg−k ( l−lO )−λ l̇

On ramène l’étude au mouvement autour de la position d’équilibre qui est déterminée par écriture de la condition 

d’équilibre P⃗+ F⃗ el+ F⃗ f=0⃗   ce qui amèneleq=lO−
mg
k

. 

On introduit alors la nouvelle variable Z=l-leq. Alors Z(t) vérifie : m Z̈+ λ Ż+kZ=0
On peut mettre l’équation du mouvement autour de la position d’équilibre sous la forme canonique de 

l’oscillateur harmonique amorti sans second membre : Z̈+
ωO

Q
Ż+ωO

2 Z=0

Avec la pulsation propre : ωO=√ k
m

et le facteur de qualité : Q=1
λ
√km

4.2. Pendule simple
a. Système étudié.  

On considère un pendule constitué d’un point matériel M de masse m relié à un point O 
fixe par un fil de masse négligeable et inextensible de longueur l.
Les forces qui s’exercent sur le point matériel sont :
Le poids P⃗=m g⃗ La tension du fil : T⃗
On choisit une base de projection polaire ( e⃗ r , e⃗θ , e⃗ y ), θ est l’angle entre la verticale vers 

le bas et la direction de O⃗M
b. Etablissement de l’équation du mouvement.  

On écrit la 2LN dans le référentiel terrestre supposé galiléen : (d p⃗M /R

dt )
R

=P⃗+T⃗
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On projette selon e⃗ r : ml θ̇2=T On projette selon e⃗θ : m . l θ̈=−mg sin θ

On obtient l’équation du mouvement du pendule : θ̈+ωO
2 sin θ=0 Avec la pulsation propre ωO=√ g

l
Cette équation différentielle n’est pas linéaire, il n’y a donc pas de résolution analytique possible. 

c. Equation du mouvement aux petits angles.  
On se ramène souvent à l’étude des solutions pour des petits angles. On pose alors θ=0+δ θ
On traduit alors les termes de l’équation du mouvement θ̈=δ θ̈ et  sin θ≈δ θ 
On obtient alors l’équation du mouvement de l’oscillateur harmonique δ θ̈+ωO

2 δ θ=0 

5. Solide en glissement sur un plan incliné.
5.1. Système étudié.

On considère un skieur situé sur une piste inclinée d’un angle α. On le modélise par un solide de centre  
d’inertie G qu’on suppose resté en translation le long de la pente.
Le bilan des forces s’exerçant sur le solide est :

 L’action à distance de la gravité terrestre.
 L’action de contact du plan sur le solide. Elle se décompose en deux composantes :

 Une composante normale perpendiculaire au plan de vecteur force  N⃗ . La norme et le 
point d’application de cette composante sont à déterminer en fonction du système.

 Une composante tangentielle,  résultant  des frottements entre les  deux systèmes,  qui 
s’oppose au mouvement du solide (quand il y en a un) de vecteur force T⃗ . 

5.2. Situation d’équilibre ou mise en mouvement ?
On étudie une première situation pour laquelle on suppose que le skieur est initialement immobile sur la  
piste. Dans ce cas, les lois de la statique de Coulomb s’expriment de la manière suivante :

 Dans la situation de non glissement du solide définie par une vitesse de glissement v⃗ g=0⃗

 La composante tangentielle de l’action de contact solide vérifie la relation  ‖T⃗‖< f s‖N⃗‖ où le 
paramètre fs est le coefficient de frottement statique.

Si cette relation n’est plus vérifiée, le solide se met en mouvement et on observe le début du glissement.

5.3. Etude du mouvement de glissement.
On étudie maintenant la situation pour laquelle on suppose que le skieur est initialement immobile sur la 
piste mais on sait que la condition de non glissement n’est pas respectée, il se met donc en mouvement.
Dans ce cas, les lois de la dynamique de Coulomb s’expriment de la manière suivante :

 Dans la situation de glissement du solide pour laquelle v⃗ g≠0⃗ ;

 La composante tangentielle de l’action de contact vérifie  ‖T⃗‖=f d‖N⃗‖ où le paramètre fd est le 
coefficient de frottement dynamique.

Capacités exigibles 
o Masse d’un système, conservation de la masse d’un système fermé.

o Quantité de mouvement d’un point d’un système de points. Lien avec le vitesse du 
centre d’inertie.

o Énoncer  la  première  loi  de  Newton  (  ou  principe  d’inertie)  comme  condition 
d’existence de référentiels galiléens

o Décrire le mouvement relatif de deux référentiels galiléens.

o Etablir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et 
en rendre compte sur un schéma.

o Exploiter la seconde loi de Newton pour déterminer les équations du mouvement 
d’un point matériel dans un référentiel galiléen.

o Mener l’étude d’un solide dans le champ de pesanteur avec ou sans frottement.

o Modéliser un comportement élastique par une loi de force linéaire. 

o Établir l’équation du mouvement du pendule simple

o Frottements  solide/solide :  les  lois  de  Coulomb  ne  sont  pas  à  connaître  mais 
l’étudiant doit savoir les exploiter pour résoudre un exercice

12


	Introduction.
	1. Description du point de vue d’un observateur.
	1.1. Relativité du mouvement.
	1.2. Définition d’un référentiel.
	1.3. Postulat de la mécanique classique.
	2. Description du mouvement d’un point.
	2.1. Éléments de description.
	2.2. La base de projection cartésienne.
	2.3. La base de projection cylindro-polaire.
	2.4. Coordonnées sphériques.
	3. Choix d’une base adaptée pour l’étude d’un mouvement.
	3.1. Mouvement à accélération constante.
	3.2. Etude du mouvement circulaire.
	3.3. Repère de Frenet pour une trajectoire plane connue.
	A propos des bases orthonormées directes.
	Introduction.
	1. Éléments d’inertie d’un système mécanique.
	1.1. Masse inertielle et quantité de mouvement d’un point.
	1.2. Centre d’inertie et quantité de mouvement d’un système.
	2. Les lois de Newton, ou les principes de la mécanique newtonienne.
	2.1. Première loi de Newton (ou principe d’inertie).
	Enoncé : Il existe des référentiels, dits galiléens, pour lesquels le mouvement d’un point matériel isolé est une translation rectiligne uniforme.
	2.2. Actions mécaniques. Troisième loi de Newton.
	2.3. Seconde loi de Newton (ou principe fondamental de la dynamique ou loi de la quantité de mouvement).
	3. Mouvement dans le champ de pesanteur terrestre uniforme.
	3.1. Étude en négligeant les frottements.
	3.2. Étude en appliquant un modèle de frottement linéaire.
	3.3. Etude en appliquant un modèle de frottement quadratique.
	4. Oscillations autour d’un point d’équilibre.
	4.1. Masse accrochée à un ressort.
	4.2. Pendule simple
	5. Solide en glissement sur un plan incliné.
	5.1. Système étudié.
	5.2. Situation d’équilibre ou mise en mouvement ?
	5.3. Etude du mouvement de glissement.

