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Problème 1 : Traitement du signal d’un magnétomètre.
Expression du signal électrique à étudier.

1. Les relations fournies e (t )=−S
dB
dt

 et B=µH−a H 3 amène à l’expression e (t )=−Sµ
dH
dt

+3 SaH 2 dH
dt

.

2. On sait que H=ni(t )+
BO

µ
 , on l’injecte dans l’expression précédente ce qui donne :

e (t )=−Sµn
di
dt

+3 Sa(ni(t )+ BO

µ )
2

n
di
dt

 où i(t )=Im sin (ωe t ) et 
di
dt

(t )=ωe Imcos(ωe t )

On en déduit e (t )=−Sµnωe Imcos(ωe t )+3 Sa(n Im sin (ωe t )+
BO

µ )
2

nωe Imcos(ωe t )

e (t )=−Sµnωe Imcos(ωe t )+3 Sa(n2 Im
2 sin2(ωe t )+2

BO

µ
n Im sin (ωe t )+(BO

µ )
2

)nωe Imcos(ωe t )

On  montre  par  les  formule  de  trigonométrie  que  sin (ωe t )cos(ωe t )=
1
2

sin (2ωe t ) et    que 

sin2(ωe t )cos(ωe t )=
1
2

(1−cos(2ωe t ))cos(ωe t )=
1
4

cos(ωe t )+
1
4

cos(3ωe t )

ce qui donne e (t )=Snωe Im(3
4
an2 Im

2 −µ+3a(BO

µ )
2

)cos(ωe t )+3 Sa
BO

µ
ωen

2 Im
2 sin (ωe t )

3
4
Sωean

3 Im
3 cos(3ωe t )

On obtient bien l’expression donnée dans l’énoncé avec la constante K 2=3aS (n Im)
2ωe( BO

µ )
Conception du filtre passe bande.

3. Pour un filtre passe bande d’ordre 2 : H ( j ω)=
HO

1+ jQ( ω
ωO

−
ωO

ω )
 Où HO est le gain statique, Q le facteur 

de qualité et ωO la pulsation propre.

4. Le gain associé s’exprime : G (ω)=
|HO|

√1+Q2( ω
ωO

−
ωO

ω )
2

 

Il passe par un maximum lorsque f (ω)=1+Q2( ω
ωO

−
ωO

ω )
2

passe par un minimum obtenu lorsque ( ω
ωO

−
ωO

ω )
2

=0

Le gain du filtre passe bande passe donc par un maximum lorsque ω=ωO  et alors Gmax=G (ωO)=|HO|
5. Par définition, la bande passante est l’ensemble des fréquences pour lesquelles le gain en décibel du filtre 

est supérieur au gain en décibel maximum -3dB ce qui se traduit par un gain supérieur au gain maximum  

divisé par √2. La largeur de la bande passante d’un filtre passe bande d’ordre 2 est donnée par Δω=
ωO

Q
.

6. A BF : H ( j ω)= j HO
ω

QωO

 ce qui amène à la relation entre les tensions complexes s(t )=
HO

QωO

( j ω)e (t ) 

qui se traduit pour les tensions réelles par s(t )=
HO

QωO

de
dt

(t ).

On obtient bien un comportement dérivateur du filtre à basse fréquence.

7. A HF :  H ( j ω)=
HOωO

Q jω
 ce qui amène à la relation entre les tensions complexes  ( j ω)s(t )=HO

ωO

Q
e (t ) 

qui se traduit pour les tensions réelles par 
ds
dt

(t )=HO

ωO

Q
e (t )   puis s(t )=HO

ωO

Q
∫ e (t )dt

On obtient bien un comportement intégrateur du filtre à haute fréquence.
8.  Pour mesurer BO via la constante K2, il faut que le filtre sélectionne la pulsation 2ωe, il faut donc que la 

pulsation propre du filtre soit réglée sur cette pulsation : ωO=2ωe
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9.  On souhaite que le rapport des amplitudes soit divisé par 10 Il faut donc que 
G (ωe)
G (2ωe)

= 1
10

.

En prenant la forme asymptotique basse fréquence du gain  pour ωe on obtient G (ωe)=HO

ωe

Q∗2ωe

En tenant compte de la question précédente G (2ωe)=HO  on obtient donc 
ωe

Q∗2ωe

= 1
10

 et Q=5

Pour l’harmonique de rang 3 à haute fréquence G (3ωe)=HO

2ωe

Q∗3ωe

 on obtient donc ρ= 2
15

10. Par définition, l’impédance Z  d’un dipôle est le facteur de proportionnalité entre la tension complexe uax 
bornes du dipôle et l’intensité complexe du courant qui traverse le dipôle U=Z⋅I .

L’admittance Y  d’un dipôle est l’inverse de son impédance soit Y= 1
Z

. 

Pour un conducteur ohmique de résistance R Y R=
1
R

 et pour un condensateur de capacité C Y C= jC ω.

11. Dans le modèle idéal de l’ALI :
• La résistance d’entrée tend vers l’infini et les intensités des courants entrant par les bornes d’entrée 

inverseuse i- et non inverseuse i+ sont nulles i−=i+=0
• La résistance de sortie tend vers zéro, l’intensité du courant en sortie de l’ALI est cependant limité par 

l’intensité de saturation isat.
12. On observe sur le cirucit une boucle de rétroaction sur la borne d’entrée inverseuse. On peut alors faire  

l’hypothèse d’une égalité des potentiels sur les bornes d’entrée ; V +=V−

13. La loi des nœuds en terme de potentiel en A donne : Y 1 (e−V A )+Y 2 (0−V A )+Y 4 (s−V A )+Y 5(V−−V A )=0  

La loi des nœuds en terme de potentiel en – donne Y 5 (V A−V−)+Y 3 (s−V−)=0 . 

Le circuit montre que V +=0s et la relation issue de l’hypothèse de fonctionnement linéaire donne V−=V +=0 

On traduit la seconde relation par V A=
−Y 3

Y 5

s  qu’on réinjecte dans la première pour obtenir :

Y 1e=−Y 4 s−(Y 1+Y 2+Y 4+Y 5)
Y 3

Y 5

s  d’où Y 1Y 5 e=−Y 4Y 5 s−(Y 1+Y 2+Y 4+Y 5)Y 3 s

 On obtient bien alors H= s
e
=

−Y 1Y 5

Y 4Y 5+Y 3 (Y 1+Y 2+Y 4+Y 5)
14. A BF le circuit équivalent est donné ci contre :

Il n’y a aucun courant dans la résistance connectant la sortie à la 
borne – d’où V+=V-=s =0

A HF le circuit équivalent est donné ci contre :
Un fil connecte la sortie à A puis un fil connecte A à -. On en 
déduit V+=V-=VA=s=0

On réalise bien ici un filtre passe bande.

 
15.  On remplace dans l’expression précédente les admittances ce qui donne :

H=

−1
R

jCω

( jC ω)2+ 1
R ( 1

R
+ 1
R2

+ jC ω+ jC ω)
 On multiplie en haut et en bas par 

R
2 jC ω

On obtient H=

−1
2

j
R
2
Cω+ 1

2( 1
R

+ 1
R2

) 1
jC ω

+1

 de la bonne forme H=
HO

1+ jQ( ω
ωO

−
ωO

ω )
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par identification { HO=
−1

2
RC
2

= Q
ωO

R+R2

2RR2C
=QωO

 ce qui donne bien { HO=
−1

2

ωO=
1
RC √1+ R

R2

Q=1
2 √1+ R

R2

On utilise une résistance R=10kΩ ; on suppose qu’on souhaite fixer le facteur de qualité à Q=5.

16. On souhaite obtenir un facteur de qualité de 5 ce qui donne 4Q2=1+ R
R2

 

En négligeant 1 devant 4Q2=100, on obtient R2=
R

4Q2  A.N : R2=100Ω

On souhaite une fréquence propre fO=2fe=10kHz ce qui donne 4 π f e=
1
RC √1+ R

R2

= 2Q
RC

Finalement  C= Q
2π R f e

 A.N : C= Q
2π R f e

=1,6⋅10−8 F

17. Pour les études asymptotiques du gain, on reprend les éléments de la question 6.

A BF H ( j ω)= j
HOω

QωO

 d’où GdB(ω)=20 log|HO|−20 logQ+20 log
ω
ωO

A HF H ( j ω)=
HOωO

Q jω
 d’où GdB(ω)=20 log|HO|−20 logQ−20 log

ω
ωO

en ω=ωO  H ( j ω)=HO  d’où GdB(ωO)=20 log|HO|
On exprime alors numériquement les différents éléments :
 20 log|HO|≈−6dB  ; 20 logQ≈14 dB

on trace alors le diagramme de Bode en amplitude ci contre.
Détection synchrone.

18. D’après l’énoncé, le signal demandé s’écrit  sous la forme :

s2(t )=G (s p(t )+b(t )) sref (t )=GK 2 A sin2(2ωe t )+sref (t )b(t )
Avec  les  formules  de  trigonométrie  on  le  réexprime : 

s2(t )=
G
2
K 2 A−G

2
K 2 A cos(4ωe t )+sref (t )b(t )

La composante constante de ce signal est donnée par sa moyenne. On sait que ⟨ s2 cos(4ωe t )⟩=0 et ⟨ sref (t )b(t )⟩=0 

on en déduit que la composante constante recherchée est ⟨ s2(t )⟩=
G
2
K 2 A

19. La  forme  canonique  demandée  est  H Pbas( j ω)=
HO

1+ j
ω

QωO

−( ω
ωO

)
2 .  La  valeur  du  facteur  de  qualité 

permettant d’obtenir une fréquence de coupure égale à la fréquence propre du filtre est Q= 1

√2
Par définition, la pulsation de coupure à -3dB est la pulsation pour laquelle le gain est égal à la valeur maximale du 
gain divisée par √2 équivalent à la valeur maximale du gain en décibel -3dB.

 A la fréquence propre pour le filtre Pbas2, H Pbas( j ωO)=
HO

j
Q

 ainsi le gain est GPbas(ωO)=HOQ

Pour Q= 1

√2
, on observe donc que GPbas(ωO)=

HO

√2
, on sait de plus que le filtre ne présente pas de résonance et que 

GPbas ;max=HO ; on en déduit donc bien que GPbas(ωO)=
GPbas ;max

√2
et donc que ωO=ωC lorsque Q= 1

√2
.

20. On souhaite que ∀ f > f seuil    GPbas( f )<10−2 cette condition est vérifiée à condition que GPbas( f seuil)<10−2

La  fréquence  seuil  est  donc  dans  le  domaine  haute  fréquence  pour  lequel  la  fonction  de  transfert

H Pbas( j ω)→HO(ωO

ω )
2

 ainsi GPbas( f seuil)=HO( f c
f seuil)

2

<10−2 ce qui donne f c=
f seuil

10√(HO)
=
f seuil
10
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21. Dans  les  conditions  décrites,  le  signal  de  sortie  est  la  composante  constante  du  signal  s 2(t)  soit 

s3(t )=⟨ s2(t )⟩=
G
2
K 2 A

Ajout d’un courant de compensation.
22. Le circuit intégrateur vu en cours présente l’allure suivante.

On observe un boucle de rétroaction sur l’entrée inverseuse : V +=V−

D’après le schéma : V +=0 et LNP en – donne 
U e−V−

R
+(U s−V−) jC ω=0

On obtient : U e+U s jRCω=0

La fonction de transfert est alors 
U s

U e

=− 1
jRCω

 

Par retour aux notations réelles on obtient U e+RC
dU s

dt
=0 ce qui donne U s(t )−U s(tO)=− 1

RC∫
tO

t

U e(t ' )dt '

Ce circuit présente donc bien un caractère intégrateur.

23. A la  sortie du  système de détection synchrone, le système produit le signal  s3(t )=
G
2
K 2 A  avec K2 qui 

dépend du champ magnétique au niveau de la bobine de mesure (BO−Bcomp) de la forme (BO−nOµicomp) où 
nO est le nombre de spires dans la bobine de mesure.

Ce signal est  intégré  puis  converti  en un courant de compensation  icomp(t )=iO+
M
RC∫ (BO−nOµicomp)dt  où M 

donne le facteur de proportionnalité final entre s3 et le champ magnétique sous la forme s3(t )=M (Bo−Bcomp)
Lorsque la compensation n’est pas établie, le courant augmente et le champ de compensation augmente jusqu’à ce  
que le champ total s’annule, le courant de compensation est alors constant à iO.

24. La grandeur permettant alors de connaître BO est l’intensité du courant iO tel que Btot=0=(BO−nOµiO) ce 

qui donne finalement  BO=nOµiO .
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Problème 2 : étude d’une onde sinusoïdale tronquée.

1. On établit qu’une OPUND sinusoïdale s’écrit s ' (x , t )=A cos(2π f O(t−x
c))=A cos(2π f O t−

2π
λO

x)
On retrouve ainsi le lien λO=

c
f O

 On rappelle que c=3,00.108m⋅s−1 , on obtient alors  λO=2,21.10−2m  on tombe 

dans le domaine des micro-ondes.
2. Lorsque la fin du paquet d’onde est émise en t=τ/2, le début du paquet d’onde émis en t=-τ/2 s’est propagée 

sur  la  distance  L=c τ .  Dans  le  modèle  de  l’OPUND,  cette  distance  reste 

invariante au cours de la propagation. On obtient L=3,30.104m .
3. Pour parcourir la distance 5L il faut au paquet d’onde une durée 5τ ; le paquet 

d’onde  arrivera  donc  en  ce  point  entre  les  instants  4,5τ et  5,5τ.  La 
représentation graphique demandée est ci contre.

4. Le départ du paquet a lieu en x=0 en t=-τ/2, à l’instant t=8τ il a donc parcouru 
une distance 8,5L. La fin d’émission du paquet a lieu en t=τ/2, à l’instant t=8τ, 
il a parcouru une distance 7,5L. La représentation graphique demandée est ci 
contre.

5. Sur la durée d’un paquet d’onde il s’écoule un nombre N de périodes ce qui 

donnent  NT= N
f O

=τ ,  on  en  déduit  N=τ f O  ;  l’A.N.  donne  N=1,50.106  Cette  application  numérique 

montre que les représentations graphiques proposées ne respectent pas le rapport d’échelle entre la durée τ 
et la période T. Elles sont clairement faites pour faciliter la compréhension du paquet d’onde étudié.

6. On  nous  donne  s(0 , t )=e (t ).  On  sait  que  l’expression  générale  d’une  OPUND  est  de  la  forme 

s(x , t )=f (t−x
c) et qu’alors s(0 , t )=f (t−0

c)=f (t ) on en déduit que s(x , t )=e(t−x
c)

ce qui donne s(x , t )=A(t−x
c)cos(2π f O(t−x

c)) avec A(t−x
c)={AO

0
pour−τ /2≤t−x

c
≤τ /2

sinon

7. Pour effectuer un allé-retour, il faut au paquet d’onde une durée tV=
2d
c

.

8. La différence de temps de vol s’exprime tV '−tV=2
d '−d
c

 on souhaite que tV '−tV≥
τ
2

 on distinguera des 

surfaces réfléchissantes séparées d’une distance  d '−d=c
τ
2
= L

2
=1,65.104m  on serait alors incapable de 

distinguer la surface de l’océan et le fond de la fosse des Mariannes point le plus profond de l’océan  
terrestre. Cette méthode est donc parfaitement inefficace.

9. On déduit de l’énoncé d '−d=
λO
2

=1,10.102m  ; la performance se rapproche nettement de la performance 

réelle du satellite mais surestime encore cette dernière.
10. Le phénomène expliquant le décalage de fréquences entre les ondes émise et réfléchie est l’effet Doppler.
11. L’onde réfléchie se propage dans le sens rétrograde de l’axe (Ox). Elle s’écrit donc sous la forme :

 sR(x , t )=A '(t+x c)cos(2π f O '(t+x c)+φ)  on observe bien que le déphasage de cette onde avec l’onde émise en 

(x,t)=(0,0) est égale à φ.

12. Le  déphasage  s’exprime  2π f O '(t+vt c)+φ−2π f O(t−vt
c)  on  en  déduit 

2π f O '(1+v
c)+φ−2π f O(1−v

c)=0 pour  que  le  déphasage  soit  constant  au  niveau  de  la  surface 

réfléchissante ce qui amène la relation 
f O '

f O
=

1−v
c

1+v
c

.

13. Par  une  approximation  affine  de  la  relation  précédente,  validée  par  le  fait  que  δf<<fO,  on  obtient 

f O '=f O(1−2
v
c)  on obtient donc δ f=

2 vf O
c

 ce qui donne v= c δ f
2 f O

=30m⋅s−1=108 km⋅h−1
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Résolution de problème : 
1. On observe que le signal à conserver présente 30 périodes sur l’intervalle de temps -0,03 à 0,03 ce qui 

donne une période T=2,0.10-3s et donc une fréquence f=500 Hz.
On doit donc conserver ce signal en éliminant le signal à 50 Hz du réseau EDF. 
Avec les deux composants  fournis,  Il  faut  donc utiliser  un filtre  passe haut  d’ordre 1 de fonction de transfert  

H ( j ω)=
HO j

f
fo

1+ j
f
fo

dont la fréquence de coupure fO est comprise entre les fréquence fe =50Hz et fS = 500Hz.

On peut proposer un filtre C, R en série où la tension de sortie est mesurée aux bornes de R de gain statique H O=1 et 

de fréquence de coupure f O=
1

2π RC
On cherche à conserver au maximum l’amplitude du signal et à atténuer le signal EDF d’un facteur 10 par exemple.

On obtient alors G ( f e)≈
f e
fo

≈ 1
10

 ce qui amène à une fréquence de propre fO=fC=fS le signal étudié sera alors atténué 

d’un facteur √2.

On souhaite donc que f O=
1

2π RC
=500 on prend pour valeur arbitraire une résistance R=1,0M Ω ; on obtient alors 

pour valeur de la capacité c= 1
2π R f O

=1,0.10−7 F

On peut alors faire comme observation qu’un filtre passe haut d’ordre 2 avec un facteur de qualité  Q= 1

√2
 aurait 

permis une meilleure performance de conservation du signal étudié en atténuant tout autant le signal EDF bruiteur.
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