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Approche énergétique du mouvement d’un point matériel.

1. Puissance et travail d’une force. Théorème de l’énergie cinétique.

1.1. Puissance d’une force dans un référentiel.

Définition : Soit une force  F⃗s’appliquant sur un point matériel M animé dans le référentiel d’étude R d’une 
vitesse v⃗M /R. La puissance P F⃗ ;M /Rde la force s’exprime dans le référentiel R par : P F⃗ ;M /R

=F⃗ . v⃗M /R. 

La puissance s’exprime en W.

Exemple : On considère un pavé posé sur un plan incliné et glissant le long de ce 
plan. La puissance de la réaction s’exprime : P R⃗ ;M /R=R⃗ . v⃗M /R.

Pour un contact sans frottement, la composante tangentielle de la réaction est nulle, 
la puissance de la réaction est nulleP R⃗ ;M /R=0
Sinon, la composante tangentielle est de sens opposé à la vitesse est alorsP R⃗ ;M /R<0
La force de frottement est une force résistante.

Propriétés : Une force est dite motrice lorsque sa puissance dans le référentiel d’étude est positive, elle est dite 
résistante lorsque sa puissance dans le référentiel d’étude est négative. 

1.2. Travail d’une force dans un référentiel.
On considère un point matériel M qui suit une trajectoire (C) entre le 
point de départ A (instant tA) et le point d’arrivée B (instant tB).

Définition     :   Le travail élémentaire de la force  F⃗  en M s’exprime :  δW=P F⃗ ;M /Rdt=F⃗ . v⃗M /R .dt=F⃗ .d O⃗M . Le 

travail est homogène à une énergie, il s’exprime en Joule (J).

On constate que le travail élémentaire est relié à la puissance par une intégration temporelle et qu’il est relié à la 
force elle-même par une intégration « le long de la trajectoire ».

Pour exprimer le travail d’une force, on a alors deux possibilités :
 Partir  de l’expression de la  puissance.  Sommer les travaux élémentaires  revient  alors à intégrer  en 

fonction du temps. W A→B=∫ δW=∫
t A

tB

P F⃗ ;M /Rdt .

 Partir de la forme ‘spatiale’. Sommer les travaux élémentaires revient alors à intégrer le long de la 

trajectoire.  W A→B=∫ δW= ∫
A→
C
B

F⃗ .d O⃗M .  Le travail  d’une force   s’appliquant au point matériel  M 

s’exprime comme la circulation de la force de A en B le long de la trajectoire (C).

Définition     :   On appelle circulation  C G⃗ ,Γ d’un champ vectorielG⃗ (M ,t )  le long d’une courbe (Γ) la grandeur 

exprimée par : GG⃗ ,Γ= ∫
A→
C
B

G⃗ (M ,t ) .d O⃗M

Exemple de calcul     : Prenons le cas d’une force constante F⃗C. W A→B=F⃗C ∫
A (⃗c )B

d O⃗M=F⃗C . A⃗B

Remarque     :   ATTENTION : dans le cas général, le travail d’une force dépend de la trajectoire (C) décrite par le 
point matériel pour aller de A en B.

1.3. Energie cinétique et lois d’évolution de l’énergie cinétique.
a. Grandeur énergétique cinématique.  

Définition     :  Soit  un point  matériel  M de masse m animé d’une vitesse  v⃗M /R dans  le  référentiel  d’étude R. 

L’énergie cinétique de ce point matériel s’exprime : EC ;M /R=
1
2
m‖v⃗M /R‖

2

b. Lien entre travail des forces et énergie cinétique.  
On écrit la seconde loi de Newton pour un point matériel M de masse m dans le référentiel R supposé galiléen et 

On effectue un produit scalaire de chaque terme avec le vecteur vitesse v⃗M /R.(d p⃗M /R

dt )
R

v⃗M /R=∑ ( F⃗→M . v⃗M /R)

1



Cours de physique PCSI2 2025-2026
Mouvements et interactions.

On sait de plus que : p⃗M /R=m v⃗M /R on en conclut que : (d p⃗M /R

dt )
R

v⃗M /R=
d
dt (12m ( v⃗M /R )2)

On reconnaît dans le terme de droite les puissances associées à chaque force : ∑ ( F⃗→M . v⃗M /R)=∑ P F⃗→M

On obtient donc une première écriture : 
d
dt

(EC ;M /R )=∑ P F⃗→M

On multiplie alors par une durée infinitésimale dt : d (EC ;M /R )=∑ P F⃗→M .dt=∑ δW F⃗→M

On obtient ainsi la seconde écriture : d (EC ;M /R )=∑ δW F⃗→M

En intégrant le long de la trajectoire (C) suivie par le point matériel entre les points A et B, on obtient alors la 
troisième écriture :  (EC (B )−EC ( A ))=∑W A→B

c. Enoncés des lois.  
Les lois d’évolution de l’énergie cinétique pour un point matériel découlent directement de la seconde loi de 
Newton,  elles  ne  permettent  donc  pas  d’obtenir  des  renseignements  supplémentaires  sur  le  système étudié. 
Cependant,  l’approche  énergétique  s’avère  parfois  beaucoup  plus  intéressante  à  exploiter  que  l’approche 
dynamique pure.
Loi de la puissance cinétique : On étudie le mouvement d’un point M dans un référentiel galiléen. La loi de la 

puissance cinétique s’exprime alors sous la forme : 
d
dt

(EC ;M /R )=∑ P F⃗→M

Loi de l’énergie cinétique :  On considère un point matériel M qui se déplace dans le référentiel R supposé 
galiléen le long d’une trajectoire (C) entre les points A et B.
 La variation de l’énergie cinétique lors d’un petit  déplacement le long de la trajectoire (C) est  donnée par 
l’écriture locale de la loi de l’énergie cinétique : d (EC ;M /R )=∑ δW F⃗→M

La variation totale de l’énergie cinétique entre les points A et B est donnée par l’écriture intégrale de la loi de 
l’énergie cinétique : (EC (B )−EC ( A ))=∑W A→B

1.4. Exemple d’application de la loi de l’énergie cinétique.
On considère une moto lancée sur une route supposée horizontale à la vitesse initiale vO. Elle freine avec une 
force résistante constante de norme F. On veut déterminer la distance d parcourue avant son arrêt total.

 On travaille avec une base de projection cartésienne telle que la vitesse s’exprime v⃗O=vO e⃗ x. 

 La force résistante  F⃗s’exprime alors F⃗=−F⃗ . e⃗ x On en déduit l’expression de son travail élémentaire

δW F⃗=F⃗ .d O⃗M=−Fdx puis de son travail total W F⃗=−Fd

 Le poids est vertical perpendiculaire à la vitesse, son travail est donc nul. 
 Les roues roulent sans glisser sur la route, le travail des réactions de la route sur les roues est donc nul. 

 On applique la loi de l’énergie cinétiqueEC , finale−EC ,initiale=−Fd . On obtient alorsd=
mvO

2

2F
 

L’utilisation de la loi de l’énergie cinétique permet de déterminer la distance d’arrêt d uniquement à partir de la 
connaissance  de  l’état  initial  et  de  l’état  final  du  système  étudié  sans  se  soucier  du  détail  de  l’évolution 
temporelle de sa vitesse ou de sa position.

2. Champ de force conservatif et Energie potentielle.

2.1. Premier exemple, la force de gravité à la surface de la Terre.
On considère la force de pesanteur exercée sur un point matériel  de masse m dans un champ de pesanteur 
uniforme caractérisé par  le vecteur accélération de pesanteur g⃗. P⃗=m g⃗
Le travail élémentaire de cette force s’exprime : δW P⃗=m g⃗ .d O⃗M .

On note ( e⃗ z) le vecteur unitaire vertical vers le haut alors P⃗=m g⃗=−mg e⃗ z  ; d O⃗M=dx e⃗ x+dy e⃗ y+dz e⃗ z

Le travail élémentaire de la force de gravité s’écrit : δW
P⃗
=−mg .dz=−d (mgz ) 

Le travail de la force entre deux points A et B le long d’une trajectoire (C) s’écrit : W P⃗ ; A→B=mgz A−mgzB

Conclusion :
 Le  travail  élémentaire  de  la  force  de  pesanteur  s’exprime  comme  la  variation  élémentaire  d’une 

fonction de la seule position du point matériel M.
 Le travail de la force de pesanteur entre le point A et le point B ne dépend plus de la trajectoire pour 

aller de A en B mais seulement des positions des points extrêmes.
On introduit  alors l’énergie potentielle de pesanteur :  EP , g⃗(M )=mgz+COù C est  une constante à établir en 
fonction des conditions imposées ou choisies dans le problème étudié.

Le travail élémentaire de la force de gravité s’exprime alors : δW P⃗=−d (EP , g⃗ (M ))
Le travail de la force de gravité entre un point A et un point B s’exprime alors : W P⃗ ; A→B=EP , g⃗ (A )−EP , g⃗ (B )

La force de pesanteur dérive alors de l’énergie potentielle et s’exprime : P⃗=−
dEP

dz
( z ) e⃗ z
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2.2. Deuxième exemple, la force de rappel élastique.
On considère un point matériel M de masse m relié à un point fixe O par un ressort de longueur à vide lO et de 
raideur k.
La position de M est exprimée par : O⃗M=l u⃗ où u⃗ est un vecteur unitaire et l la longueur du ressort.
La force exercée par le ressort sur le point matériel s’exprime : F⃗ el=−k ( l−lO ) u⃗
Le travail élémentaire de la force s’exprime alors : δW el=−k ( l−lO ) u⃗ .d ( l u⃗ )

d (l u⃗ )=dl u⃗+ld ( u⃗) d’où u⃗ d (l u⃗ )=dl+l u⃗ d (u⃗)=dl car u⃗ d (u⃗)=d(12 u⃗2)=0
 On en conclut que : δW el=−k (l−lO)dl=−k (l−lO)d (l−lO)=−d( 12 k (l−lO)

2)
Lorsqu’on exprime le travail de la force entre deux points A et B le long d’une trajectoire (C), on obtient : 

W el ; A→B=
1
2
k (lA−lO)2−1

2
k (lB−lO)2

Conclusion :
 Le travail élémentaire de la force de rappel élastique s’exprime comme la variation élémentaire d’une 

fonction de la seule position du point matériel M.
 Le travail de la force de rappel élastique entre le point A et le point B ne dépend plus de la trajectoire 

pour aller de A en B mais seulement des positions des points extrêmes.

On introduitl’énergie potentielle élastique : EP ,el(M )=1
2
k (l−lO)2

Le travail élémentaire de la force élastique s’exprime alors : δW el=−d (EP ,el (M ))
Le travail de la force élastique entre un point A et un point B s’exprime alors : W el ; A→B=EP ,el (A )−EP ,el (B )

La force de rappel élastique dérive de l’énergie potentielle et s’exprime : F⃗ el=−
dEP ,el

dl
( l ) . u⃗

Remarque     : Cette énergie potentielle est également définie à une constante près, on a fixé ici la constante à zéro 
lorsque le ressort est au repos (l=lO) ce qui est la convention généralement adoptée pour ce type de système.

2.3. Troisième exemple, les forces centrales Newtoniennes.
a. Définition des forces centrales, et centrales Newtoniennes.  

Une force est  dite  centrale  si  elle  est  toujours  dirigée vers  le  même point  nommé alors  centre  de  la  force 
généralement pris comme origine du repère spatial. 
Parmi ces forces centrales, on distingue les forces centrales newtoniennes pour lesquelles le vecteur position par 

rapport au centre de force O s’exprime O⃗M=r u⃗ et le vecteur force s’exprime F⃗N=
k

r2
u⃗.

Parmi les forces fondamentales, on peut distinguer deux forces qui sont de nature centrale et newtonienne :
 La force gravitationnelle exercée par un système de masse mA qu’on attribue entièrement à un point A 

pris comme centre de la force sur un point matériel M de masse m.

La  force  gravitationnelle  s’exprime  F⃗G , A→M=−
GmAm

r2
u⃗ où  G=6 ,67 .10−11N .m2 .kg−2 est  la  constante  de 

gravitation universelle et A⃗M=r u⃗
 La force coulombienne exercée par un système de charge totale qA qu’on attribue à un point A pris 

comme centre de la force sur un point matériel M portant une charge q.

La force coulombienne s’exprime F⃗C , A→M=
qA q

4 πεO r
2 u⃗ où εO=

1

36 π .109
F .m−1 est la permittivité absolue du vide 

et A⃗M=r u⃗
b. Energie potentielle asociée.  

On reprend la démarche pour déterminer l’énergie potentielle associée à une force centrale newtonienne :

 Le travail élémentaire de la force s’exprime : δW N=
k

r2
u⃗ .d (r u⃗ )

On peut toujours exprimer : u⃗ d (r u⃗ )=dr+r u⃗ d (u⃗)=dr  et alors δW N=
k

r2
dr=−d( kr )

Conclusion :
 Le travail élémentaire de la force de rappel élastique s’exprime comme la variation élémentaire d’une 

fonction de la seule position du point matériel M.
 Le travail de la force de rappel élastique entre le point A et le point B ne dépend plus de la trajectoire 

pour aller de A en B mais seulement des positions des points extrêmes.

On introduit alors l’énergie potentielle associée à la force centrale newtonienne : EP ,N (M )= k
r
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Le travail élémentaire de la force centrale newtonienne s’exprime alors : δW N=−d (EP ,N (M ))
Le  travail  de  la  force  centrale  newtonienne  entre  un  point  A  et  un  point  B  s’exprime : 
W N ; A→B=EP ,N (A )−EP ,el (B )

La force centrale newtonienne dérive alors de l’énergie potentielle et s’exprime : F⃗N=−
dEP ,N

dr
(r ) . u⃗

Remarque     : Cette énergie potentielle est également définie à une constante près, on a fixé ici la constante à zéro 
lorsque la distance r→∞ ce qui est la convention généralement adoptée pour ce type de système.

2.4. Généralisation du lien entre force conservative et énergie potentielle.
a. Enoncé des propriétés des forces conservatives.  

Définition : Une force F⃗  est dite conservative si elle dérive d’une fonction scalaire du seul vecteur position que 
l’on nomme alors énergie potentielle EP , F⃗. 

Propriété     :  Le travail élémentaire de la force δW F⃗ s’exprimera alors par la relation : δW F⃗
=−d (EP , F⃗

(M ))
Le travail de la force pour aller de A en B ne dépend plus de la trajectoire mais uniquement des 

points de départ et d’arrivée : W F⃗ ; A→B=EP , F⃗
(A )−EP , F⃗

(B )
La force s’exprime de manière générale sous la forme : F⃗=− ⃗grad (EP)(M )

L’opérateur employé est nommé gradient et son introduction complète est l’objet d’un polycopié…

b. Retour sur le premier exemple.  
Pour la force de gravité à la surface de la Terre, on se place en coordonnées cartésiennes et le gradient s’exprim

⃗grad (EP)(M )=
∂EP

∂ x
(M ) e⃗ x+

∂EP

∂ y
(M ) e⃗ y+

∂EP

∂ z
(M ) e⃗ zoùEP(M )=mgz.

L’énergie potentielle ne dépend que de z alors le gradient s’exprime : ⃗grad (EP)(M )=
d EP

d z
(M ) e⃗ z 

Finalement P⃗=−
d EP

d z
(M ) e⃗ z=−mg e⃗ z

c. Retour sur le troisième exemple.  
Pour la force Newtonienne s’exerçant par exemple sur une planète, on se place en coordonnées cylindro-polaires 
car on sait que le mouvement est plan, et qu’on repère alors la position du point matériel par les coordonnées 

polaires (r,θ) dans ce plan : ⃗grad (EP)(M )=
∂EP

∂ r
(M ) e⃗ r+

1
r

∂EP

∂θ
(M ) e⃗θ+

∂EP

∂ z
(M ) e⃗ z oùEP(M )= k

r
.

L’énergie potentielle ne dépend que de r, on en déduit que ⃗grad (EP)(M )=
d EP

d r
(M ) e⃗ r

Finalement P⃗=−
d EP

d r
(M ) e⃗ r=

k

r2
e⃗ r

d. Etude d’un exemple supplémentaire     : le piège de Penning.  
Dans le  piège de Penning,  une particule  de charge q est  soumise  à  une force électrostatique  qui  dérive de 

l’énergie potentielle EP(M )=
qV O

2d2
(x2+ y2−2 z2)

Le gradient associé s’exprime ⃗grad (EP(M ))=
∂EP

∂ x
(M ) e⃗ x+

∂EP

∂ (M ) e⃗ y+
∂EP

∂ z
(M ) e⃗ z 

la force qui en dérive s’exprime alors F⃗ (M )=−
qV O

d2
x e⃗ x−

qV O

d2
y e⃗ y+2

qV O

d2
z e⃗ z 

C’est une force élastique, attractive vers O dans les directions (Ox) et (Oy), répulsive dans la direction (Oz).

3. Etude des systèmes conservatifs à un degré de liberté.

3.1. Introduction de l’énergie mécanique et des systèmes conservatifs.

Reprenons la loi de l’énergie cinétique et écrivons sa forme locale : d (EC ;M /R )=∑ δW→M

Distinguons alors les forces conservatives et les forces non conservatives, et réécrivons ce théorème.
d (EC ;M /R )=δW N .C .→M+δW C→Msoitd (EC ;M /R )=δW N .C .→M−d (EP;M )

Finalementd (EC ;M /R+EP ;M )=δW N .C .→M

On voit ainsi apparaître une nouvelle énergie caractéristique du point matériel M considéré dans le problème. 
Cette énergie est la somme de l’énergie cinétique et des énergies potentielles associées aux forces conservatives 
dans le problème étudié.
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Définition     : Dans  un  problème  où  on  considère  un  point  matériel  M  soumis  (entre  autres)  à  des  forces 
conservatives, on définit l’énergie mécanique du point matériel comme la somme de l’énergie cinétique et des 
énergies potentielles associées aux forces conservatives. EM=EC ;M /R+EP ;M

Enoncé :  La loi de l’énergie cinétique se réexprime alors en fonction de l’énergie mécanique de la manière 
suivante. Les variations de l’énergie mécanique d’un point matériel sont données par le travail des forces Non 
Conservatives s’appliquant à ce point matériel : d (EM )=δW N .C .→M

Définition et caractérisation : Un point matériel suit une évolution conservative dans un référentiel R (on dit 
souvent que le système est conservatif),  si  son énergie mécanique est une constante. On dit encore que son 
énergie mécanique est une intégrale première du mouvement. Et alors d (EM )=0
!!!!!!!Remarque très importante : pour qu’un système soit conservatif,  il  suffit que le travail  des forces non 
conservatives sur le point matériel soit nul !!!!!!!

3.2. Etude énergétique du pendule simple.

a. Mise en place de l’étude.  
On considère un pendule constitué d’un point matériel M de masse m relié à un point O 
fixe par une tige rigide de masse négligeable et inextensible de longueur l.
Les forces qui s’exercent sur le point matériel sont :
Le poids P⃗=m g⃗ La tension du fil : T⃗
Pour  décrire  l’évolution  de  ce  système,  on  a  besoin  de  déterminer  celle  d’un  seul 
paramètre qui est l’angle θ.  On se trouve donc dans le cas d’un système à un degré de 
liberté.   Pour  ce  type  de  système,  on  peut  effectuer  l’étude  du  mouvement  par  des 
raisonnements énergétiques.

 La vitesse du point M s’exprime : v⃗M /R=l θ̇ . e⃗θ. L’énergie cinétique s’exprime : EC=
1
2
ml2 θ̇2

 La tension du fil est une force non conservative mais elle est orientée selon e⃗ r, elle ne travaille donc 
pas.

 Le poids P⃗=m g⃗ est une force conservative associée à une énergie potentielle
Option  1,  on  la  recalcule  δW P=P⃗ d O⃗M  avecP⃗=mg e⃗ zet  d O⃗M=ld θ e⃗θ d’où 

δW P=P⃗ .d O⃗M=mg e⃗ z . ld θ e⃗θ=−mgl sin θdθ
L’énergie potentielle de pesanteur s’exprime donc, en fixant l’origine des énergies potentielles en θ=0 par la 
relation : EP=mgl (1−cosθ ).

Option 2, on utilise l’expression connue EP(M )=−mgz+C , on traduit z=lcos θ et on fixe la 

constante en prenant une énergie potentielle nulle en θ=0  et alors EP=mgl (1−cosθ )

b. Obtention de l’équation du mouvement.  
Pour un système conservatif  à  un degré  de liberté,  ici  il  s’agit  de  l’angle  θ,  on peut  obtenir  l’équation du 
mouvement en exploitant la conservation de l’énergie mécanique au cours du temps :

 L’énergie mécanique s’exprime :EM=EC+EP=
1
2
ml2 θ̇2+mgl (1−cosθ )

 Cette grandeur est conservée, sa dérivée par rapport au temps est donc nulle : 
d
dt

(EM )=0

 On obtient ml2 θ̇ θ̈+mgl (θ̇ sin θ )=0 puis l’équation du mouvement  θ̈+ g
l
sin θ=0  

c. Exploitation de l’énergie potentielle, état du système et positions d’équilibre.  
On  trace  l’énergie  potentielle  en  fonction  du 
paramètre spatial θ.
On  étudie  alors  l’énergie  mécanique  du  point 
matériel.  C’est  une  grandeur  conservée,  elle 
gardera  toujours  la  même  valeur  qu’à  l’instant 
initial.

 Si  on  considère  un  point  matériel  lâché 
avec une énergie mécanique E1 à l’instant 
initial,  il  pourra  donc  se  déplacer  sur 
l’intervalle [−θ1 ;θ1 ]mais ne pourra pas en 
sortir.  On  constate  que  dans  ce  cas 
l’amplitude du mouvement sera finie. Le pendule sera animé d’un mouvement d’oscillations entre les 
valeurs extrêmes −θ1 et θ1. On dit qu’on observe un état lié, le système ne peut pas quitter le puit de 
potentiel dans lequel il est piégé.
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 Si on considère un point matériel lâché avec une énergie mécanique E2 à l’instant initial, il pourra se 
déplacer et atteindre n’importe quelle valeur d’angle. Le pendule décrira alors des rotations autour du 
point O et son amplitude tendra vers  ∞. On dit qu’on observe un état de diffusion, le système peut 
quitter le voisinage de sa position de départ.

Sur cette illustration, on constate également que :
 L’énergie  potentielle  passe  par  des  minima  en  θn=2nπ .  Ces  points  correspondent  également  aux 

positions d’équilibre stables du pendule
 L’énergie potentielle passe par des maxima en  θn '=(2n+1)π  qui correspondent aussi à des positions 

d’équilibre instables du pendule.

d. Linéarisation du mouvement autour d’une position d’équilibre.  

L’équation du mouvement pour le pendule simple s’écrit sous la forme : θ̈+ωO
2 (sin θ )=0 avec ωO=√ g

l
La position θO=0 est identifiée comme une position d’équilibre. On peut alors étudier le mouvement de faible 
amplitude autour de cette position en posant θ=θO+δ θ
On effectue une approximation linéaire de l’équation différentielle, on traduit alors θ̈→δ θ̈ ;sin θ→δ θ 
On obtient alors l’équation du mouvement de l’oscillateur harmonique libre :δ θ̈+ωO

2 δ θ=0 
Le  petit  mouvement  du  pendule  autour  de  la  position  d’équilibre  stable  est  alors  constitué  d’oscillations 

sinusoïdales à la pulsation ωO=√ g
l
et de période T=2π

ωO

=2π √ l
g

3.3. Résumé des méthodes.

a. Obtention de l’équation du mouvement.  
Pour un système conservatif à un degré de liberté, on peut obtenir l’équation du mouvement en exploitant 
la conservation de l’énergie mécanique au cours du temps.

 On exprime l’énergie mécanique du système.

 On traduit le caractère conservatif par la propriété 
dEM

dt
=0

 On en déduit l’équation du mouvement du point matériel.

b. Etudes des positions d’équilibre.  
En étudiant l’énergie potentielle, on peut déterminer les positions d’équilibre du point matériel étudié 
ainsi que leur nature stable ou instable. 
Soit  un  système  conservatif  pour  lequel  l’énergie  potentielle  EP du  point  matériel  étudié  dépend  du  seul 
paramètre x.

 Les positions d’équilibre xe sont les extrema de l’énergie potentielle : 
dEP

dx
( xe )=0

 Les positions d’équilibre stables sont des minima de l’énergie potentielle : 
d2EP

dx2 ( xe )>0

c. Petites oscillations autour d’une position d’équilibre stable.  
Autour d’une position d’équilibre stable, on peut étudier les oscillations de petite amplitude du point matériel en 
linéarisant l’équation du mouvement autour de cette position d’équilibre stable.

 L’équation du mouvement s’écrit sous la forme : ẍ+ f (x)=0
 On identifie xO comme une position d’équilibre. On pose x=xO+δ x avec δx petit.

 On identifie alors f(x) avec l’équation de la droite tangente en xO :f (x)=f (xO)+
df
dx

(xO)δ x .

 xO est une position d’équilibre donc f (xO)=0et l’équation devient δ ẍ+ df
dx

(xO)δ x=0

Remarque 1     :  En terme mathématique,  on dit  qu’on effectue le Développement limité à l’ordre 1 (DL1) de 
l’équation du mouvement de départ autour de la position d’équilibre considérée.
Remarque 2 : On constate que quel que soit le problème conservatif traité, si on met en évidence une position 
d’équilibre,  les  petits  mouvements  autour  de  cette  position  d’équilibre  vérifieront  toujours  l’équation  du 
mouvement de l’O.H. Ce dernier apparaît donc comme le cas limite des oscillations de n’importe quel système 
dès lors qu’on s’intéresse à de petits mouvements autour d’une position d’équilibre stable.

d. Nature des trajectoires, état du système.  
Lorsqu’on trace la courbe de l’énergie potentielle en fonction du seul paramètre spatial dont elle dépend pour un 
système conservatif, on peut déduire de son allure la nature des trajectoires possibles pour un point matériel en 
fonction de son énergie mécanique.
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 Pour  un  point  matériel  d’énergie  mécanique  Em,  on  désigne  alors  par  le  vocabulaire  suivant  les 
différentes zones du champ énergétique :
 On désigne par le terme de puits de potentiel les zones où l’énergie potentielle est inférieure à 

l’énergie mécanique du système. Un point d’énergie Em est alors susceptible d’explorer ce puits de 
potentiel  sur  une extension  limitée  par  les  points  d’arrêt  en lesquels  son énergie  cinétique  est 
nécessairement nulle.

 On désigne par le terme de barrière de potentiel les zones où l’énergie potentielle est supérieure à 
l’énergie  mécanique  du  point  matériel.  Ces  zones  ne  peuvent  pas  être  explorées  par  le  point 
matériel.

 L’énergie  mécanique  E1 correspond  à  un  point 
matériel dont le domaine d’évolution est borné, on 
parlera dans ce cas d’un état lié.

 E2 correspond à un point matériel dont le domaine 
d’évolution n’est pas borné, on parlera dans ce cas 
d’un état de diffusion.

 E3 peut correspondre à un état lié ou de diffusion 
selon les conditions initiales.

 

Capacités exigibles
o Reconnaître le caractère moteur ou résistant d’une force
o Définir et calculer la puissance et le travail d’une force
o Distinguer force conservative et force non-conservative
o Savoir  établir  et  exploiter  les  expressions  des  énergies  potentielles  de  pesanteur, 

élastique et Newtonnienne.
o Reconnaître  les  cas  de  conservation de  l’énergie  mécanique et  utiliser  les  conditions 

initiales pour la déterminer
o Établir l’équation d’un mouvement conservatif à partir de l’énergie.
o Déduire d’une courbe d’énergie potentielle  l’existence de positions d’équilibre et  leur 

stabilité.
o Déduire d’une courbe d’énergie potentielle le comportement qualitatif d’un système dont 

on  connaît  l’énergie  mécanique  :  état  lié  ou  de  diffusion,  éventuel  mouvement 
périodique.

o Exploiter  qualitativement  le  lien  entre  le  profil  d’énergie  potentielle  et  le  portrait  de 
phase.

o Approximer  un  puits  de  potentiel  quelconque par  un puits  harmonique au  voisinage 
d’une  position  d’équilibre  stable.  Identifier  cette  situation  au  modèle  de  l’oscillateur 
harmonique
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