Cours de physique PCSI2 2025-2026
Mouvements et interactions.

Approche énergétique du mouvement d’un point matériel.

1. Puissance et travail d’une force. Théoréme de I’énergie cinétique.

1.1. Puissance d’une force dans un référentiel.

Définition : Soit une force F s’appliquant sur un point matériel M animé dans le référentiel d’étude R d’une

vitesse V. La puissance Py, .de la force s’exprime dans le référentiel R par : Pﬁ;M/R:F Vg

La puissance s’exprime en W.

Exemple : On considere un pavé posé sur un plan incliné et glissant le long de ce
plan. La puissance de la réaction s’ exprime : P R.Vyp

R

R;MI/R =
Pour un contact sans frottement, la composante tangentielle de la réaction est nulle,

la puissance de la réaction est nullePy., =0 L

Sinon, la composante tangentielle est de sens opposé a la vitesse est alorsPy.,, . <0

/R

La force de frottement est une force résistante.

Propriétés : Une force est dite motrice lorsque sa puissance dans le référentiel d’étude est positive, elle est dite
résistante lorsque sa puissance dans le référentiel d’étude est négative.

1.2 Travail d’une force dans un référentiel.

On considére un point matériel M qui suit une trajectoire (C) entre le
point de départ A (instant ta) et le point d’arrivée B (instant tg).

Définition : Le travail ¢lémentaire de la force F en M s’exprime : 6W:Pﬁ;M,Rdt:I_5.VM,R.dt:ﬁ.dO_lVI. Le

travail est homogéne a une énergie, il s’exprime en Joule (J).

On constate que le travail élémentaire est relié a la puissance par une intégration temporelle et qu’il est relié¢ a la
force elle-mé&me par une intégration « le long de la trajectoire ».

Pour exprimer le travail d’une force, on a alors deux possibilités :
» Partir de I’expression de la puissance. Sommer les travaux élémentaires revient alors a intégrer en
t

B
fonction du temps. WA_>B=J‘ 6W=f Py dt.
ta

» Partir de la forme ‘spatiale’. Sommer les travaux élémentaires revient alors a intégrer le long de la

trajectoire. W, B:f W= f F.dOM. Le travail d’une force F s’appliquant au point matériel M
A-C)B
s’exprime comme la circulation de la force de A en B le long de la trajectoire (C).

Définition : On appelle circulation C; . d’un champ Vectorielé(M ,t) le long d’une courbe (') la grandeur

exprimée par : G = f G(M,t).dOM

A-B

Exemple de calcul : Prenons le cas d’une force constante IEC. W/HBZI:"C _[ d a\'/I:F"C.Z»B

A(0)B
Remarque : ATTENTION : dans le cas général, le travail d’une force dépend de la trajectoire (C) décrite par le
point matériel pour aller de A en B.

1.3.  Energie cinétique et lois d’évolution de I’énergie cinétique.

a. Grandeur énergétique cinématique.

Définition : Soit un point matériel M de masse m animé d’une vitesse V,,,, dans le référentiel d’étude R.

r . . e . , . . 1 - 2
L’¢énergie cinétique de ce point matériel s’exprime : E.. W=y m 1V szl

b. Lien entre travail des forces et énergie cinétique.
On écrit la seconde loi de Newton pour un point matériel M de masse m dans le référentiel R supposé galiléen et

: : . - dp - =
On effectue un produit scalaire de chaque terme avec le vecteur vitesse v ;. (%) Vur= Z (F s VMR
R
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- - dp - -
On sait de plus que : p,,,,=mV,,,, on en conclut que : ( Z’:“R) vM,R:%(%m(vM,R)Z)
R

On reconnait dans le terme de droite les puissances associées & chaque force : (F sm- Vi R): D P,

. o d
On obtient donc une premiére écriture : E(EC" Y ,R)zz Piyu

On multiplie alors par une durée infinitésimale dt : d (EC;M,R)ZZ P.,,-dt= Z Wl
On obtient ainsi la seconde écriture : d (EC;M,R):Z W=,

En intégrant le long de la trajectoire (C) suivie par le point matériel entre les points A et B, on obtient alors la
troisiéme écriture : (EC(B)—EC(A)):Z W,.sg

c. Enoncés des lois.
Les lois d’évolution de I’énergie cinétique pour un point matériel découlent directement de la seconde loi de
Newton, elles ne permettent donc pas d’obtenir des renseignements supplémentaires sur le systéme étudié.
Cependant, I’approche énergétique s’avére parfois beaucoup plus intéressante a exploiter que 1’approche
dynamique pure.

Loi de la puissance cinétique : On étudie le mouvement d’un point M dans un référentiel galiléen. La loi de la

. L o d
puissance cinétique s’exprime alors sous la forme : E(EC; M/ R):Z P:iu

Loi _de I’énergie cinétique : On considére un point matéricl M qui se déplace dans le référentiel R supposé
galiléen le long d’une trajectoire (C) entre les points A et B.

La variation de 1’énergie cinétique lors d’un petit déplacement le long de la trajectoire (C) est donnée par
I’écriture locale de la loi de 1’énergie cinétique : |d (EC; M/ R): z 374

ﬁ—>M|
La variation totale de 1’énergie cinétique entre les points A et B est donnée par 1’écriture intégrale de la loi de
1’énergie cinétique : |(EC(B)—EC(A)):Z WA+B|

1.4. Exemple d’application de la loi de I’énergie cinétique.

On considére une moto lancée sur une route supposée horizontale a la vitesse initiale vo. Elle freine avec une
force résistante constante de norme F. On veut déterminer la distance d parcourue avant son arrét total.
»  On travaille avec une base de projection cartésienne telle que la vitesse s’exprime V,=v,€,.
> La force résistante F s’exprime alors F =—F .€, On en déduit I’expression de son travail élémentaire
1) Wﬁ:?.d@\»/I:—Fdx puis de son travail total W ;=—Fd

» Le poids est vertical perpendiculaire a la vitesse, son travail est donc nul.

» Les roues roulent sans glisser sur la route, le travail des réactions de la route sur les roues est donc nul.
2

. . . s . mv
> On applique la loi de I’énergie cinétiqueE . 4,0, — Ec jniiare=— Fd . On obtient alorsd :2—;
L’utilisation de la loi de I’énergie cinétique permet de déterminer la distance d’arrét d uniquement a partir de la
connaissance de 1’état initial et de I’état final du systéme étudié sans se soucier du détail de 1’évolution

temporelle de sa vitesse ou de sa position.
2. Champ de force conservatif et Energie potentielle.
2.1.  Premier exemple, la force de gravité a la surface de la Terre.

On considere la force de pesanteur exercée sur un point matériel de masse m dans un champ de pesanteur
uniforme caractérisé par le vecteur accélération de pesanteur g. P=mg
Le travail ¢lémentaire de cette force s’exprime : SW;=mg.d OM.

On note (EZ) le vecteur unitaire vertical vers le haut alors P=mg=—mg@é, ; d OM =dx ,+dy é +dzé,
Le travail élémentaire de la force de gravité s’écrit : SW =—mg. dz=—d(mgz)

Le travail de la force entre deux points A et B le long d’une trajectoire (C) s’écrit : W, , ,=mgz ,—mgzy
Conclusion :
» Le travail élémentaire de la force de pesanteur s’exprime comme la variation élémentaire d’une
fonction de la seule position du point matériel M.
» Le travail de la force de pesanteur entre le point A et le point B ne dépend plus de la trajectoire pour

aller de A en B mais seulement des positions des points extrémes.

On introduit alors 1’énergie potentielle de pesanteur : E P}g(M )=mgz+COu C est une constante a établir en
fonction des conditions imposées ou choisies dans le probléme étudié.

Le travail élémentaire de la force de gravité s’exprime alors : 6W ;=—d (E P,é(M ))
Le travail de la force de gravité entre un point A et un point B s’exprime alors : W

. . . ) -~ dE -
La force de pesanteur dérive alors de 1’énergie potentielle et s’exprime : P=— d—P (z)e
z
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2.2. Deuxiéme exemple, la force de rappel élastique.
On considére un point matériel M de masse m relié a un point fixe O par un ressort de longueur a vide 1o et de
raideur k.
La position de M est exprimée par : OM =11 ou Ui est un vecteur unitaire et | la longueur du ressort.
La force exercée par le ressort sur le point matériel s’exprime : a=—k(I-1,)t
Le travail élémentaire de la force s’exprime alors : W ,=—k(I—1,)td.d (1)

d(l1ti)=dlt+1d (i) d’ou tid(Iti)=dl+1tid (ii)=dl car ad(a):d(%az):o

On en conclut que : 6WE,:—k(I—lo)dI:—k(I—Io)d(l—lo):—d(%k(l—lo)z)

Lorsqu’on exprime le travail de la force entre deux points A et B le long d’une trajectoire (C), on obtient :
1 2 1 2
WeI;A—)B:Ek“A_IO) _Ek(ls_lo)
Conclusion :
» Le travail élémentaire de la force de rappel élastique s’exprime comme la variation élémentaire d’une
fonction de la seule position du point matériel M.
» Le travail de la force de rappel élastique entre le point A et le point B ne dépend plus de la trajectoire
pour aller de A en B mais seulement des positions des points extrémes.

On introduitl’énergie potentielle élastique : E

1
P]el(M):Ek(l—lo)z

Le travail élémentaire de la force élastique s’exprime alors : 6W,=—d (E palM ))

Le travail de la force élastique entre un point A et un point B s’exprime alors : We,;AaB:EP!L,I(A)—EP!E,(B)

- dE
La force de rappel ¢lastique dérive de 1’énergie potentielle et s’exprime : F el:—d—l;’d (1).u

Remarque : Cette énergie potentielle est également définie a une constante preés, on a fixé ici la constante a zéro
lorsque le ressort est au repos (I=lo) ce qui est la convention généralement adoptée pour ce type de systéme.

2.3. Troisieme exemple, les forces centrales Newtoniennes.

a. Définition des forces centrales, et centrales Newtoniennes.
Une force est dite centrale si elle est toujours dirigée vers le méme point nommé alors centre de la force
généralement pris comme origine du repére spatial.

Parmi ces forces centrales, on distingue les forces centrales newtoniennes pour lesquelles le vecteur position par
T T
rapport au centre de force O s’exprime OM =ru et le vecteur force s’exprime Fy=—

u.

-

Parmi les forces fondamentales, on peut distinguer deux forces qui sont de nature centrale et newtonienne :
» La force gravitationnelle exercée par un systéme de masse ma qu’on attribue entiérement a un point A
pris comme centre de la force sur un point matériel M de masse m.
La force gravitationnelle s’exprime F G As M:—Gm—Amﬁ ot G=6,67.10"""N.m’.kg™* est la constante de
s r2 4
gravitation universelle et AM=rii
» La force coulombienne exercée par un systéme de charge totale qa qu’on attribue & un point A pris
comme centre de la force sur un point matériel M portant une charge q.

. . = q.q9 - 1 —1 e s .
La force coulombienne s’exprime F ;= uole,=———F.m  estla permittivit¢ absolue du vide

Ane,r’ 367.10

et AM=riu
b. Energie potentielle asociée.
On reprend la démarche pour déterminer 1’énergie potentielle associée a une force centrale newtonienne :

> Le travail élémentaire de la force s’exprime : SW N:% u.d(rii)
r

On peut toujours exprimer : tid (rii)=dr+riid(ii)=dr et alors SWN:%dr:—d(é)
r
Conclusion :
» Le travail élémentaire de la force de rappel élastique s’exprime comme la variation élémentaire d’une
fonction de la seule position du point matériel M.
» Le travail de la force de rappel élastique entre le point A et le point B ne dépend plus de la trajectoire
pour aller de A en B mais seulement des positions des points extrémes.

= | =

On introduit alors I’énergie potentielle associée a la force centrale newtonienne : E,, (M )=
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Le travail élémentaire de la force centrale newtonienne s’exprime alors : §W y=—d (E p, v M ))
Le travail de la force centrale newtonienne entre un point A et un point B s’exprime:
WN;A—)B:EP,N(A)_EP,BI(B)

. L, . , . . . > dEp N -
La force centrale newtonienne dérive alors de 1’énergie potentielle et s’exprime : Fy=— dr’ (r).u
Remarque : Cette énergie potentielle est également définie a une constante pres, on a fixé ici la constante a zéro
lorsque la distance r—o ce qui est la convention généralement adoptée pour ce type de systéme.

2.4. Généralisation du lien entre force conservative et énergie potentielle.
a. Enoncé des propriétés des forces conservatives.

Définition : Une force F est dite conservative si elle dérive d’une fonction scalaire du seul vecteur position que
I’on nomme alors énergie potentielle E, .
Propriété : Le travail élémentaire de la force SW . s’exprimera alors par la relation : SW ﬁ:_d (E M ))

Le travail de la force pour aller de A en B ne dépend plus de la trajectoire mais uniquement des
points de départ et d’arrivée : W- E,-(A)—-E, :(B)

F;A>B =
La force s’exprime de maniére générale sous la forme : F=—grad (E P) (M)

P,T:(
P,F

P,F

L’opérateur employé est nommé gradient et son introduction compléte est 1’objet d’un polycopié...

b. Retour sur le premier exemple.
Pour la force de gravité a la surface de la Terre, on se place en coordonnées cartésiennes et le gradient s’exprim

- _0E, . OE, . OE; - . _
grad(E,)(M)= 7y (M)eﬁW(M)eﬁE(M)ezouEP(M)—mgz.
- dE
L’énergie potentielle ne dépend que de z alors le gradient s’exprime :grad (E P) (M)= q zP (M)e,

dE,

dz
c. Retour sur le troisi¢me exemple.

Pour la force Newtonienne s’exercant par exemple sur une planéte, on se place en coordonnées cylindro-polaires

car on sait que le mouvement est plan, et qu’on repére alors la position du point matériel par les coordonnées

Finalement P=— (M)é,=—mgé,

. ~ OE . 10E . ,OE S k
polaires (r,0) dans ce plan :grad(EP)(M): 8rP(M)er+76—9P(M)ee+6—;(M)ez ouEP(M)ZF.
- dE R
L’¢énergie potentielle ne dépend que de r, on en déduit quegrad (E, |(M )= 7 rp (M)e,
- dE k. = dE k
Finalement P=——%X(M)é,==¢ F =——L(r)é. = —¢
inalemen dr( )é, e 0 (re. %

d. Etude d’un exemple supplémentaire : le piege de Penning.
Dans le piege de Penning, une particule de charge q est soumise a une force électrostatique qui dérive de

\4
I’énergie potentielle EP(M):%(x2+y2—Zzz)
- OE OE OE
Le gradient associé s’exprimegrad (E,(M)|=—=(M)&é,+——(M)é +—=(M)e,
ox 0 Y 9z
- \% \ \4
la force qui en dérive s’exprime alors F (M )=— Toyg Lo,z 10305

dZ X d2 ye}’ dZ z

C’est une force élastique, attractive vers O dans les directions (Ox) et (Oy), répulsive dans la direction (Oz).
3. Etude des systémes conservatifs a un degré de liberté.

3.1. Introduction de I’énergie mécanique et des systémes conservatifs.

Reprenons la loi de ’énergie cinétique et écrivons sa forme locale : d (EC; M/ R): Z W,y

Distinguons alors les forces conservatives et les forces non conservatives, et réécrivons ce théoréme.

d(EC;M,R)ZSWN'C'%M+6WC+Msoitd(EC;M,R)chWN_C._)M—d(E

pim)

Finalementd(EC;M,R+EP;M):6WN'C'_)M

On voit ainsi apparaitre une nouvelle énergie caractéristique du point matériel M considéré dans le probléme.
Cette énergie est la somme de 1’énergie cinétique et des énergies potentielles associées aux forces conservatives
dans le probléme étudié.
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Définition : Dans un probléme ou on considére un point matériel M soumis (entre autres) a des forces
conservatives, on définit I’énergie mécanique du point matériel comme la somme de 1’énergie cinétique et des
énergies potentielles associées aux forces conservatives. |E w=Ec.urtEp, M|

Enoncé : La loi de I’énergie cinétique se réexprime alors en fonction de I’énergie mécanique de la maniére
suivante. Les variations de I’énergie mécanique d’un point matériel sont données par le travail des forces Non
Conservatives s’appliquant a ce point matériel : |d (E M): Wy s M|

Définition et caractérisation : Un point matériel suit une évolution conservative dans un référentiel R (on dit
souvent que le systéme est conservatif), si son €nergie mécanique est une constante. On dit encore que son
énergie mécanique est une intégrale premiére du mouvement. Et alors |d (E M) =0

3.2. Etude énergétique du pendule simple.

a. Mise en place de I’étude.
On considére un pendule constitué d’un point matériel M de masse m relié a un point O
fixe par une tige rigide de masse négligeable et inextensible de longueur 1.
Les forces qui s’exercent sur le point matériel sont :
Le poids P=m J La tension du fil : T
Pour décrire 1’évolution de ce systéme, on a besoin de déterminer celle d’un seul
paramétre qui est I’angle 6. On se trouve donc dans le cas d’un systéme a un degré de z
liberté. Pour ce type de systéme, on peut effectuer 1’étude du mouvement par des
raisonnements énergétiques.

. . . - . , s R . 1 ;
» Lavitesse du point M s’exprime : v,,,,=10.¢€,. L’énergie cinétique s’exprime : Eczzml2 6’

» La tension du fil est une force non conservative mais elle est orientée selon ¢€,, elle ne travaille donc
pas.
» Le poids 13=m§ est une force conservative associée a une énergie potentielle
Option 1, on la recalcule SW,=PdOM avecP=mg ¢ et dOM=1d6¢, d’ou
SW,=P.dOM=mg#,.1d 08,=—mglsin 6d6
L’énergie potentielle de pesanteur s’exprime donc, en fixant 1’origine des énergies potentielles en 6=0 par la
relation : EP:mgl(l—Cos 6).

Option 2, on utilise 1’expression connue E,(M )=—mgz+C E, =-mgz+C, on traduit z=Icos 0 et on fixe la
constante en prenant une énergie potentielle nulle en 6=0 et alors E,=mgl(1—cos6)
b. Obtention de I’équation du mouvement.

Pour un systéme conservatif a un degré de liberté, ici il s’agit de I’angle 6, on peut obtenir I’équation du
mouvement en exploitant la conservation de 1’énergie mécanique au cours du temps :

» L’énergie mécanique s’exprime :EM:EC+EP:%m1292+mgl(1—cos(-))

»  Cette grandeur est conservée, sa dérivée par rapport au temps est donc nulle : % (E M):O

> On obtient ml°§8+mgl (6sin6)=0 puis I’équation du mouvement é+% sin0=0

c. Exploitation de I’énergie potentielle, état du systéme et positions d’équilibre.
On trace I’énergie potentielle en fonction du
paramétre spatial 6. !
On étudie alors I’énergie mécanique du point E;
matériel. C’est une grandeur conservée, elle ;
gardera toujours la méme valeur qu’a l’instant !
initial.

e Si on considére un point matériel laché
avec une énergie mécanique E, a I’instant
initial, il pourra donc se déplacer sur_Z._._._. L. NoAL oo o NS J 1) -
I’intervalle [—Gl;Bl]mais ne pourra pas en 0

sortir. On constate que dans ce cas
I’amplitude du mouvement sera finie. Le pendule sera animé d’un mouvement d’oscillations entre les
valeurs extrémes —0, et 6,. On dit qu’on observe un état li€, le systéme ne peut pas quitter le puit de

potentiel dans lequel il est pi¢gé.
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e Si on consideére un point matériel 1laché avec une énergie mécanique E, a I’instant initial, il pourra se
déplacer et atteindre n’importe quelle valeur d’angle. Le pendule décrira alors des rotations autour du
point O et son amplitude tendra vers . On dit qu’on observe un état de diffusion, le systéme peut
quitter le voisinage de sa position de départ.

Sur cette illustration, on constate également que :

» L’énergie potentielle passe par des minima en 6,=2nm. Ces points correspondent également aux
positions d’équilibre stables du pendule

> L’énergie potentielle passe par des maxima en 0,'=(2n+1)m qui correspondent aussi a des positions
d’équilibre instables du pendule.

d. Linéarisation du mouvement autour d’une position d’équilibre.

L’équation du mouvement pour le pendule simple s’écrit sous la forme : é+wzo(sin 8)=0 avec W= g

I

La position 8,=0 est identifiée comme une position d’équilibre. On peut alors étudier le mouvement de faible
amplitude autour de cette position en posant 6=0,+6 0

On effectue une approximation linéaire de 1’équation différentielle, on traduit alors 8-> ;sin 6> 56

On obtient alors 1’équation du mouvement de 1’oscillateur harmonique libre :8 8+, 6 0=0

Le petit mouvement du pendule autour de la position d’équilibre stable est alors constitué¢ d’oscillations

sinusoidales a la pulsation w,= %et de période T:2—n:2 i3 L

Wo g

3.3. Résumé des méthodes.

a. Obtention de I’équation du mouvement.

Pour un systéme conservatif & un degré de liberté, on peut obtenir I’équation du mouvement en exploitant
la conservation de I’énergie mécanique au cours du temps.

»  On exprime 1’énergie mécanique du systeme.
»  On traduit le caractére conservatif par la propriété d—tM:O
> On en déduit I’équation du mouvement du point matériel.

b. Etudes des positions d’équilibre.

En étudiant I’énergie potentielle, on peut déterminer les positions d’équilibre du point matériel étudié
ainsi que leur nature stable ou instable.

Soit un systéme conservatif pour lequel 1’énergie potentielle Ep du point matériel étudié dépend du seul
paramétre x.

dE
» Les positions d’équilibre x. sont les extrema de 1’énergie potentielle : d—P (x,)=0
X

2

» Les positions d’équilibre stables sont des minima de 1’énergie potentielle : dfzp (x,)>0

c. Petites oscillations autour d’une position d’équilibre stable.
Autour d’une position d’équilibre stable, on peut étudier les oscillations de petite amplitude du point matériel en
linéarisant 1’équation du mouvement autour de cette position d’équilibre stable.

> L’équation du mouvement s’écrit sous la forme : X+f(x)=0

»  On identifie Xxo comme une position d’équilibre. On pose x=Xx,+6 x avec dx petit.

> On identifie alors f(x) avec 1’équation de la droite tangente en Xo :f (x)=f (xo)+i(xo) 6x.

dx
. p _ ' . . . df _
> Xo est une position d’équilibre donc f (x,)=0et I’équation devient § X+E (x,)8x=0

Remarque 1 : En terme mathématique, on dit qu’on effectue le Développement limité a I'ordre 1 (DLI1) de
I’équation du mouvement de départ autour de la position d’équilibre considérée.

Remarque 2 : On constate que quel que soit le probléeme conservatif traité, si on met en évidence une position
d’équilibre, les petits mouvements autour de cette position d’équilibre vérifieront toujours [’équation du
mouvement de I’O.H. Ce dernier apparait donc comme le cas limite des oscillations de n’importe quel systeme
des lors qu’on s’intéresse a de petits mouvements autour d 'une position d’équilibre stable.

d. Nature des trajectoires, état du systéme.
Lorsqu’on trace la courbe de 1I’énergie potentielle en fonction du seul paramétre spatial dont elle dépend pour un
systéme conservatif, on peut déduire de son allure la nature des trajectoires possibles pour un point matériel en
fonction de son énergie mécanique.
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Capacités exigibles

Barriéres de potentiel

Ey(x)

¢ Points d’arrét

; ) position z
Puits de potentiel

e Pour un point matériel d’énergie mécanique E., on désigne alors par le vocabulaire suivant les
différentes zones du champ énergétique :

» On désigne par le terme de puits de potentiel les zones ou 1’énergie potentielle est inférieure a
I’énergie mécanique du systéme. Un point d’énergie E., est alors susceptible d’explorer ce puits de
potentiel sur une extension limitée par les points d’arrét en lesquels son énergie cinétique est
nécessairement nulle.

» On désigne par le terme de barriére de potentiel les zones ou I’énergie potentielle est supérieure a
I’énergie mécanique du point matériel. Ces zones ne peuvent pas étre explorées par le point

matériel.
e L’¢nergiec mécanique E, correspond a un point
matériel dont le domaine d’évolution est borné, on EA
parlera dans ce cas d’un état li€. \ i
e E, correspond a un point matériel dont le domaine

d’évolution n’est pas borné, on parlera dans ce cas
d’un état de diffusion.

e E; peut correspondre a un état 1ié ou de diffusion
selon les conditions initiales.

O

O
O
O

Reconnaitre le caractére moteur ou résistant d’une force
Définir et calculer la puissance et le travail d’'une force
Distinguer force conservative et force non-conservative

Savoir établir et exploiter les expressions des énergies potentielles de pesanteur,
élastique et Newtonnienne.

Reconnaitre les cas de conservation de I'énergie mécanique et utiliser les conditions
initiales pour la déterminer

Etablir 'équation d’'un mouvement conservatif a partir de I'énergie.

Déduire d’'une courbe d’énergie potentielle I'existence de positions d’équilibre et leur
stabilité.

Déduire d’'une courbe d’énergie potentielle le comportement qualitatif d’'un systéme dont
on connalt I'énergie mécanique : état lié ou de diffusion, éventuel mouvement
périodique.

Exploiter qualitativement le lien entre le profil d’énergie potentielle et le portrait de
phase.

Approximer un puits de potentiel quelconque par un puits harmonique au voisinage

d’'une position d’équilibre stable. Identifier cette situation au modele de l'oscillateur
harmonique
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