Cours de physique PCSI2 2025-2026
Mécanique 17" période

Oscillateur harmonique a un degré de liberté.

1. Systémes étudiés.

1.1.  Un exemple d’oscillateur mécanique : le sismographe.

On considére un point matériel de masse m reli¢ a 1’aide d’une ressort a un
point fixe du bati d’un sismographe. On suppose qu’il existe une force de
frottement visqueux s’appliquant sur le point matériel.

On suppose que le mouvement du bati z,, (#) est connu.
Liste des forces s’appliquant sur la masse :
La force de rappel élastique : F,, = —k(I —/ o)

La force de gravité : P = mg

La force de frottement linéaire : ﬁ' =MWy

On choisit une base de projection cartésienne telle que €_ soit vertical vers le haut et pour origine spatiale la position
moyenne du point O.

dp - - -
Loi de la quantité de mouvement a la masse dans le référentiel terrestre supposé galiléen : (TMt/R =P+F, + F r
R

On projette alors sur la direction verticale : m.Z2(¢) = —mg +k(zp (1) —z(t)—15) — A2(¥)

On commence par étudier la position d’équilibre pour laquelle la somme des forces sur la masse est nulle en absence de
m,

mouvement du bati z,(¥)=0. Z, = _Tg — 1, . On introduit alors la nouvelle variable Z=z-z,.

L’équation du mouvement vérifiée par Z(t) est alors : m.Z + AZ +kZ = k.z, (1)

. . 5 Do 2 2 [k 1
On peut mettre cette équation sous la forme canonique : £ + 50 Z+wyZ = wpzo(t) avee o, = ,|— ; 0= Z\/ km
m

1.2. Rappel de I'exemple d’oscillateur électronique : le RLC.

Tty . 5] L On établit alors 1’équation différentielle vérifiée par la
L= 1 tension Uc(t).
DT — | v On écrit la loi des mailles pour ce circuit:
) = — ' E())=U(0)+U, () +Uc(t)
i)

-

On écrit alors les lois de comportement pour le résistor et la bobine et le condensateur :

dl du
U,(t)=RI(?) ; UL(t)zLd—(t) I(t) =C—5(p)
t dt
d*U,. dU
On obtient alors 1’équation différentielle dzzc (t)+ag dtC (O +&Uq (1) =0 E(t) onw, =(LC)" ;

1 L 1/2
o=—=| -
R\ C
2. Etude de l'oscillateur harmonique en régime libre.
En régime libre, dans le cas de 1’oscillateur harmonique, il n’y a pas de frottement et pas de terme de forcage.

2.1. Résolution de I’équation.
a. Solution générale.
On cherche donc les solutions de I’équation différentielle S @)+ a)(z).S (#)=0.
On peut les déterminer par les méthodes usuelles de résolution des équations du second degré.
Elles sont de la forme : S(¢) = 4 Cos(a)o .t)+ B sin(a)o.l) équivalentea  S(2) =Sy COS(a)O.t + g/))

b. Solution au probléme étudié.
Pour déterminer la solution du probléme spécifiquement étudiée, il faut alors avoir accés a des conditions initiales qui

peuvent se mettre sous la forme : S(z =0) = S(0) ; S = 0) = S(0)
1



Cours de physique PCSI2 2025-2026
Mécanique 17" période

Pour la premiére forme on obtient alors : S(0) = 4 ; S(0) = w,B

Pour la seconde forme on obtient alors : S(0) =S, (COS (”) : S(0) = wp S, (—sin @)
La solution au probléme spécifique étudié est alors de la forme :

S(t) =

S(0)

(2/5)

52
S%(0)+ 57(0)

S(0) cos(a)o .t)+ >
@o

sin(a)o .t) ouS(t) =

cos| w,.t —arctan & }
O - (Ou
@S (0)

on a fait un choix sur ).

C.

Analyse des solutions.

On obtient comme solutions des oscillations sinusoidales, ou harmoniques, présentant toujours la méme pulsation @o et
donc toujours la méme période To=21/wo quel que soit I’amplitude du signal étudié. On dit qu’il y a isochronisme des
oscillations.

2.2,

Un modéle pour I’étude autour des positions d’équilibre.

Pourquoi I’oscillateur harmonique se retrouve-t-il dans tous les domaines de la physique ?

On a vu

sur I’exemple du pendule simple que I’é¢tude des oscillations de faibles amplitudes autour de la position

d’équilibre stable menait au modéle de 1’oscillateur harmonique.

Sur le paysage énergétique du pendule, on approxime

I’énergie

autour de la position d’équilibre stable.

2.3.

potentielle par son comportement parabolique

Aspect énergétique.

Pour I’oscillateur harmonique mécanique, par exemple une masse accrochée a un ressort, on introduit deux grandeurs
énergétiques :

L Lo 2 . . : .
L’¢énergie cinétique: Ec.p p = EmHvM/ R” une grandeur quadratique de la vitesse du point matériel
étudié.

. . : 1 .

L’¢énergie potentielle élastique : £p (M) ZEkxz une grandeur quadratique de 1’écart du systéme par

rapport a la position d’équilibre stable.
Ces deux grandeurs sont de somme constante puisqu’on considere ici un systéme conservatif.

Grandeurs énergétiques moyennes :

to+T

Pour un signal S(t) périodique de période T, on définit la grandeur moyenne par : <S M >T =7 S(0)dt

Pour T

o
oscillateur harmonique mécanique, pour lequel la solution a 1’équation différentielle s’écrit

S =S, COS(a)O.t+(p)on obtient : <EC;M>T Z%kS(z) et <EP;M>T :%kS(Z)

On constate que les énergies cinétique et potentielle moyennes sont égales. On dit qu’il y a équipartition de 1’énergie
pour les systémes se comportant en oscillateurs harmoniques.

3.
3.1.

a.

Etude de I'oscillateur harmonique amorti en régime libre.

Résolution de I’'équation.
Solution générale.

: o e Wo ¢ 2
On cherche donc les solutions de 1’équation différentielleS (t )+—=S(t)+w o-S (t)=0.
Q

On méne la recherche de solution sous la forme S, (t)=Aexp(rt)

2

; . . . . P w S 1
1’équation différentielle se traduit polynome caractéristique r’+ 60 r+w;, de discriminant A=, ( a - 4)

On a vu que selon la valeur de Q on obtient trois types de solutions différents :
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SiQ<1/2: S(t):Alexp(rlt)+AzeXP(rzt)avec :rlz—%(%ﬂ (%—4))etr2 —%(é— (é—4))
Q

SiQ=1/2:S(t)=(A+A,.t|exp(—w,.t)

SiQ>1/2: S(t):exp(—%)(Alcos(w.t)+Azsin(cot))avec :%:;—getw:wo 1- 20
b. Solution au probléme étudiée.

Pour déterminer la solution du probléme spécifiquement étudiée, il faut alors avoir acces a des conditions initiales qui

peuvent se mettre sous la forme : S(t=0)=5(0) ; S(t=0)=S(0)

SiQ<1/2:S(0)=A +A, et S(0)=r A +r,A,

7.5(0) — 5(0) explrnr)+ 17.5(0) — S(0)

Hn—n n—n

exp(rzt)}

On obtient pour solution au probléme : S(7) = {

SiQ=1/2: S(0) =4, ; S(0) = 4, —wp4
On obtient alors pour solution au probléme : S(t):[S(O)exp(r.t)+(S(0)+w05(0))texp(rt)]

SiQ>1/2:S(0)=A; S(O):(wAz—%Al)

1t .
On obtient alors pour solution au probléme : S(¢) = exp[ —j{S 0) COS(a).t) (S O)+ 5 )j s1n(a)t)}
T

4. Etude de I'oscillateur harmonique amorti en régime sinusoidal forcé.

4.1. Réponse en élongation pour le sismographe.

a. Recherche de réponse en régime sinusoidal forcé.
On cherche donc a déterminer la réponse en régime sinusoidal forcé pour I’équation différentielle suivante :

. 1
Z+ 0 Z+a)0Z a)()a() cos(a)t avec @, = \/7 0= \/

On introduit alors les grandeurs complexes associé au probleme :
e  Pour le mouvement du bati : Z, () = ap exp(j wt ) tel que Zp(?) = Re(g() (1 ))
e Pour le mouvement du point matériel : Z(1) =Z, exp(jor) tel que Z(2) = Re(Z(1))

e On établit 1’équation algébrique vérifiée par ces signaux complexes en traduisant les dérivées par des
multiplications par jo, on obtient 1’équation algébrique suivante :

oY0) 7 - a)(z) 4
(—a)z)go +J 0 Z, Z,= a)éao ce qui nous donne : =0 ( P 2) . W) 0
Wy — O+ j—F
0
: @:gzogz 1
On obtient ainsi en posant X =—— : 90 aop 2
P o, (1—x2)2+[xj
o
X
arg( H,)—arctan| ——— six<l1l
8(H,) (Q(HQ))
o(x)=arg(H/(jx)|= arg(HO)—% six=1
X .
arg(H,)—arctan| ———— |- six<l
g(H,) (Q(l_xz))
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b. Allure des réponses en amplitude et déphasage.
On représente ci-dessous en fonction de log(x), ’amplitude et la phase de la réponse en élongation :

2o 4

4 2 ihgx 4
En noir Q=0,2 ; en pointillé noir Q=0,5 ; en gris Q=1 ; en pointillé gris Q=2.
c. Larésonance en élongation du sismographe.

L’étude est similaire a la résonance en tension du circuit RLC.

e Si Q<%§, il n’y a pas de solution réelle et 1’élongation ne présentera pas de résonnance.

e Si QZ%E’ il y a une solution réelle positive, 1’¢longation présente une résonnance et le maximum de la

@ 20°

; , . wp 1
réponse en ¢longation est obtenue pour x, = ——= || 1 — .

4.2. Réponse en vitesse pour le sismographe.

a. Détermination de la vitesse.
Pour le sismographe, on détermine la vitesse du point matériel en régime sinusoidal forcé et en notation complexe par la

relation : Z = j@.Z On obtient donc pour expression de la vitesse en notation complexe :

. X
; ja).a)é k / o . Zo = 2 2002200
Zo = ap =—. do soit . 1
2 2, .00 A 2}, . X 1+ O] x——
Wy =0 |+ j 1—x")+j— x
o Q
Z, |Z
Zo _|Zol_ 9
Le gain en vitesse s’exprime donc : 4o €o ) 1)?
1+07| x——
X
, . Z, !
Le déphasage pour la vitesse s’exprime : @ = arg| — | = —arctan| Q| x ——
e, X

b. Allure des courbes de I’amplitude et du déphasage.
On représente ci-dessous en fonction de log(x), I’amplitude et la phase de la réponse en vitesse :

______ 164
2 RRET 144
1.8 \\\ 1.2
16 A
~ 0.8
141 06
121 i
-] |
Fre 4 2 2R 20 4
1.6 PAN
0641y
P \ 0810
‘4’ = o -14 i)
_/“-2-\ o] \\\
4 2 2 4 1.4] Tl
logx a6 TS

En noir Q=0,2 ; en pointillé noir Q=0,5 ; en gris Q=1 ; en pointillé gris Q=2.
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¢. Acuité de la résonance.
L’étude est similaire a celle de la résonance en intensité du circuit RLC.

On obtient ainsi la largeur de la plage de résonance en vitesse du sismographe : [Ax = —

o
Tableau des grandeurs équivalentes.
Meécanique Electrocinétique
Position : Z Tension aux bornes du condensateur Uc
Vitesse : 7 Intensité : [

Accélération : 7

Tension aux bornes de la bobine U

Raideur du ressort : k

Capacité du condensateur : 1/C

Facteur de frottement visqueux : A

Résistance : R

Masse : m

Inductance L

Energie potentielle élastique : Ep

Energie stockée dans le condensateur : Econd

Energie cinétique : Ec

Energie stockée dans la bobine : Euob

Puissance dissipée par frottement fluide : Pt

Puissance dissipée par effet Joule : Py

Puissance fournie par I’excitation : Py

Puissance fournie par le générateur : Pg
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