
Cours de physique PCSI2 2025-2026
Mécanique 1ière période

Oscillateur harmonique à un degré de liberté.

1. Systèmes étudiés.

1.1. Un exemple d’oscillateur mécanique : le sismographe.
On considère un point matériel de masse m relié à l’aide d’une ressort à un 
point fixe du bâti d’un sismographe. On suppose qu’il existe une force de 
frottement visqueux s’appliquant sur le point matériel.

On suppose que le mouvement du bâti  est connu.

Liste des forces s’appliquant sur la masse :

La force de rappel élastique : 

La force de gravité : 

La force de frottement linéaire : 

On choisit une base de projection cartésienne telle que  soit vertical vers le haut et pour origine spatiale la position 
moyenne du point O.

Loi de la quantité de mouvement à la masse dans le référentiel terrestre supposé galiléen : 

On projette alors sur la direction verticale : 

On commence par étudier la position d’équilibre pour laquelle la somme des forces sur la masse est nulle en absence de 

mouvement du bâti . . On introduit alors la nouvelle variable Z=z-zeq.

L’équation du mouvement vérifiée par Z(t) est alors : 

On peut mettre cette équation sous la forme canonique : avec  ; 

1.2. Rappel de l’exemple d’oscillateur électronique : le RLC.
On établit alors l’équation différentielle vérifiée par la 
tension UC(t).
On  écrit  la  loi  des  mailles  pour  ce  circuit : 

)()()()( tUtUtUtE CLR 

On écrit alors les lois de comportement pour le résistor et la bobine et le condensateur :

 )()( tRItU R   ; )()( t
dt

dI
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On  obtient  alors  l’équation  différentielle  où   2/1 LCO  ; 
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2. Etude de l’oscillateur harmonique en régime libre.
En régime libre, dans le cas de l’oscillateur harmonique, il n’y a pas de frottement et pas de terme de forçage.

2.1. Résolution de l’équation.
a. Solution générale.  

On cherche donc les solutions de l’équation différentielle .

On peut les déterminer par les méthodes usuelles de résolution des équations du second degré.

Elles sont de la forme : équivalente à

b. Solution au problème étudié.  
Pour déterminer la solution du problème spécifiquement étudiée, il faut alors avoir accès à des conditions initiales qui  
peuvent se mettre sous la forme :  ; 
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Pour la première forme on obtient alors :  ; 

Pour la seconde forme on obtient alors :  ; 

La solution au problème spécifique étudié est alors de la forme :

ou (où 

on a fait un choix sur φ).
c. Analyse des solutions.  

On obtient comme solutions des oscillations sinusoïdales, ou harmoniques, présentant toujours la même pulsation ω O et 
donc toujours la même période TO=2π/ωO quel que soit l’amplitude du signal étudié. On dit qu’il y a isochronisme des 
oscillations.

2.2. Un modèle pour l’étude autour des positions d’équilibre.
Pourquoi l’oscillateur harmonique se retrouve-t-il dans tous les domaines de la physique ? 
On a vu sur l’exemple du pendule simple que l’étude des oscillations de faibles amplitudes autour de la position 
d’équilibre stable menait au modèle de l’oscillateur harmonique.

Sur le paysage énergétique du pendule, on approxime 
l’énergie potentielle par son comportement parabolique 
autour de la position d’équilibre stable.

2.3. Aspect énergétique.
Pour l’oscillateur harmonique mécanique, par exemple une masse accrochée à un ressort, on introduit deux grandeurs  
énergétiques :

 L’énergie  cinétique :   une  grandeur  quadratique  de  la  vitesse  du  point  matériel 

étudié.

 L’énergie  potentielle  élastique :  une  grandeur  quadratique  de  l’écart  du  système  par 

rapport à la position d’équilibre stable.
 Ces deux grandeurs sont de somme constante puisqu’on considère ici un système conservatif.

Grandeurs énergétiques moyennes     :  

Pour un signal S(t) périodique de période T, on définit la grandeur moyenne par : 

Pour  l’oscillateur  harmonique  mécanique,  pour  lequel  la  solution  à  l’équation  différentielle  s’écrit

on obtient :  et 

On constate que les énergies cinétique et potentielle moyennes sont égales. On dit qu’il y a équipartition de l’énergie  
pour les systèmes se comportant en oscillateurs harmoniques.

3. Etude de l’oscillateur harmonique amorti en régime libre.

3.1. Résolution de l’équation.
a. Solution générale.  

On cherche donc les solutions de l’équation différentielleS̈ ( t )+
ωO
Q
Ṡ (t )+ωO

2 .S ( t )=0 .

• On mène la recherche de solution sous la forme SH (t )=A exp(rt )

• l’équation différentielle se traduit polynome caractéristique r2+
ωO
Q
r+ωO

2  de discriminant Δ=ωO
2 ( 1

Q2
−4)

On a vu que selon la valeur de Q on obtient trois types de solutions différents :
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Si Q<1/2 : S ( t )=A1 exp (r1 t )+A2 exp(r2 t )avec :r1=−
ωO
2 ( 1

Q
+√( 1

Q2
−4))etr2=−

ωO
2 ( 1

Q
−√( 1

Q2−4))
Si Q=1/2 : S ( t )=(A1+A2 . t )exp (−ωO . t )  

Si Q>1/2 : S ( t )=exp(− tτ )(A1 cos (ω . t )+A2 sin (ωt ))avec :
1
τ
=
ωO
2Q

etω=ωO√1− 1

4Q2

b. Solution au problème étudiée.  
Pour déterminer la solution du problème spécifiquement étudiée, il faut alors avoir accès à des conditions initiales qui  
peuvent se mettre sous la forme : S ( t=0 )=S (0 )  ; Ṡ ( t=0 )=Ṡ (0 )

Si Q<1/2 : S (0 )=A1+A2  et Ṡ (0 )=r1 A1+r2 A2

On obtient pour solution au problème : 

Si Q=1/2 :  ; 

On obtient alors pour solution au problème : S ( t )=[S (0 )exp (r . t )+( Ṡ (0 )+ωO S (0 )) t exp(rt )]
Si Q>1/2 : S (0 )=A1 ; Ṡ (0 )=(ωA2−

1
τ
A1)

On obtient alors pour solution au problème : 

4. Etude de l’oscillateur harmonique amorti en régime sinusoïdal forcé.

4.1. Réponse  en élongation pour le sismographe.
a. Recherche de réponse en régime sinusoïdal forcé.  

On cherche donc à déterminer la réponse en régime sinusoïdal forcé pour l’équation différentielle suivante :

avec  ; 

On introduit alors les grandeurs complexes associé au problème :

 Pour le mouvement du bâti :  tel que 

 Pour le mouvement du point matériel :  tel que 

 On  établit  l’équation  algébrique  vérifiée  par  ces  signaux  complexes  en  traduisant  les  dérivées  par  des 
multiplications par jω, on obtient l’équation algébrique suivante :

 ce qui nous donne : 

On obtient ainsi en posant  : 

φ (x )=arg (H ( jx ))={arg (HO)−arctan( x

Q (1−x2))                             si x<1

arg (HO)−
π

2
                                                    si x=1

arg (HO)−arctan( x

Q (1−x2))−π                      si x<1
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b. Allure des réponses en amplitude et déphasage.  
On représente ci-dessous en fonction de log(x), l’amplitude et la phase de la réponse en élongation :

En noir Q=0,2 ; en pointillé noir Q=0,5 ; en gris Q=1 ; en pointillé gris Q=2.

c. La résonance en élongation du sismographe.  
L’étude est similaire à la résonance en tension du circuit RLC.

 Si Q<1
√2

, il n’y a pas de solution réelle et l’élongation ne présentera pas de résonnance.

 Si  Q≥1
√2

,  il  y a une solution réelle positive, l’élongation présente une résonnance et le maximum de la 

réponse en élongation est obtenue pour .

4.2. Réponse  en vitesse pour le sismographe.

a. Détermination de la vitesse.  
Pour le sismographe, on détermine la vitesse du point matériel en régime sinusoïdal forcé et en notation complexe par la 
relation :  On obtient donc pour expression de la vitesse en notation complexe : 

soit 

Le gain en vitesse s’exprime donc : 

Le déphasage pour la vitesse s’exprime : 

b. Allure des courbes de l’amplitude et du déphasage.  
On représente ci-dessous en fonction de log(x), l’amplitude et la phase de la réponse en vitesse :

En noir Q=0,2 ; en pointillé noir Q=0,5 ; en gris Q=1 ; en pointillé gris Q=2.
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c. Acuité de la résonance.  
L’étude est similaire à celle de la résonance en intensité du circuit RLC.

On obtient ainsi la largeur de la plage de résonance en vitesse du sismographe : 

Tableau des grandeurs équivalentes.

Mécanique Electrocinétique
Position : Z Tension aux bornes du condensateur UC

Vitesse : Intensité : I

Accélération : Tension aux bornes de la bobine UL

Raideur du ressort : k Capacité du condensateur : 1/C
Facteur de frottement visqueux : λ Résistance : R

Masse : m Inductance L
Energie potentielle élastique : EP Energie stockée dans le condensateur : ECond

Energie cinétique : EC Energie stockée dans la bobine : Ebob

Puissance dissipée par frottement fluide : Pf Puissance dissipée par effet Joule : PJ

Puissance fournie par l’excitation : Pexc Puissance fournie par le générateur : PG
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