TD 13 – Mécanique en coordonnées cartésiennes

1. Dépassement d'un poids lourd

- (a) Étant donnée l'origine des dates et des abscisses, l'équation horaire $x_{\rm av}(t)$ de l'avant de la voiture est immédiate $x_{\rm av}(t) = \frac{1}{2}at^2 + v_0t$, le mouvement de l'avant du camion est rectiligne uniforme et son abscisse vaut L+D à la date nulle donc $X_{\rm av}(t) = v_0t + D + L$.
- (b) À la fin du dépassement, on a $x_{\text{arr}} = x_{\text{av}} d = X_{\text{av}} + L'$ d'où l'équation vérifiée par Δt : $\frac{1}{2}at^2 + v_0t d = v_0t + D + L + L' \text{ soit } \Delta t = \sqrt{\frac{2(D + L + L' + d)}{a}} = 6.8 \text{ s}.$ On en déduit $L'' = \Delta X_{\text{av}} = v_0 \Delta t = 72 \text{ km/h} \times 6.8 \text{ s} = 136 \text{ m}$

2. Choc

(a) Pour la première voiture, on a $v_{Ax}(t) = -a_A t + v$ de façon évidente*, tant que $t \le \frac{v}{a_A} = 15s$ et $x_A(t) = -\frac{1}{2} a_A t^2 + vt + d \operatorname{car} x_A(0) = d \operatorname{pour} \underline{0 \, s \le t \le 15 \, s}$

Pour la seconde voiture : pour $t \le \tau$, on a $v_{Bx} = v$ puis à partir de $t = \tau$, on a $\frac{dv_{Bx}}{dt} = -a_B$ soit $[v_{Bx}(t)]_{\tau}^t = -a_B[t]_{\tau}^t \Leftrightarrow v_{Bx}(t) - v_{Bx}(\tau) = -a_B(t-\tau)$ avec $v_{Bx}(\tau) = v$ donc $v_{Bx}(t) = -a_B(t-\tau) + v$ et ce, tant que $v_{Bx} \ge 0$ donc pour $\tau \le t \le \tau + \frac{v}{a_B}$ soit pour $2s \le t \le 32s$

En intégrant un seconde fois, on a $x_B(t) = vt$ pour $\underline{t \le \tau = 2s}$ car $x_B(0) = 0$, et ensuite $[x_B(t)]_{\tau}^t = [-\frac{1}{2}a_B(t-\tau)^2 + vt]_{\tau}^t$ et comme x_B est continue en $t = \tau$, on a $x_B(\tau) = v\tau$ ce qui donne $x_B(t) = -\frac{1}{2}a_B(t-\tau)^2 + vt$ pour $2s \le t \le 32s$.

(b) Supposons que le contact ait lieu avant que la seconde voiture décélère : on a alors pour la date de contact t_c : $-\frac{1}{2}a_At_c^2+vt_c+d=vt_c$ soit $t_c=\sqrt{\frac{2d}{a_A}}=8.9\,\mathrm{s}>\tau$. L'hypothèse est donc fausse.

Supposons que le contact ait lieu pendant les deux phases de décélération :

$$-\frac{1}{2}a_B(t_c-\tau)^2 + vt_c = -\frac{1}{2}a_A t_c^2 + vt_c + d \text{ soit } (a_A - a_B)t_c^2 + 2a_B\tau t_c - (a_B\tau^2 + 2d) = 0.$$

La résolution donne comme seule date positive $\underline{t_c=11.0 \text{ s}}$ à la position $x_c=-\frac{1}{2}a_B(t_c-\tau)^2+vt_c$ soit $\underline{x_c=289 \text{ m}}$.

Si l'on raisonne en vectoriel, il faut factoriser \vec{u}_x à chaque étape.

^{*} Mouvement rectiligne : les vecteurs ne sont pas nécessaires, on raisonne avec des mesures algébriques sur l'accélération $\vec{a_A} = \overline{a_A} \vec{u}_x = -a_A \vec{u}_x$

3. Accéléromètre balistique

On procède à une étude dynamique :

<u>Référentiel</u> : Terre, galiléen

Système: Particule {M;m}

<u>Contrainte</u>: Mouvement rectiligne => axe (Oz) seul

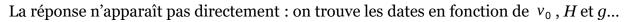
 \underline{BdF} : vide donc poids seulement (chute libre): $\vec{P} = m \vec{g}$

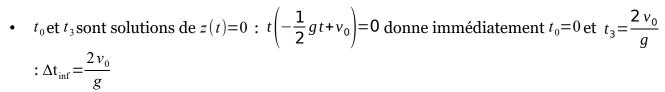
 $\underline{RFD}: m\vec{a} = \vec{P} \operatorname{donc} \vec{a} = \vec{g}$

mouvement à vecteur accélération constant, donc on intègre deux fois :

 $[\vec{v}]_0^t = \vec{g}[t]_0^t : \vec{v} - \vec{v}_0 = \vec{g}t$; sur (Oz) : $\vec{v} = v_0 - gt(\vec{v})$ va changer de signe donc algébrique)

$$[z]_0^t = v_0[t]_0^t - g\left[\frac{1}{2}t^2\right]_0^t \text{car } \overline{v} = v_z = \overset{\circ}{z} \text{ et } z(0) = 0 \text{ : on retrouve l'équation donnée.}$$





• t_1 et t_2 sont solutions de z(t)=H , équation du second degré cette fois-ci complète : $\frac{1}{2}gt^2-v_0t+H=0\;.$

Préférer de loin un nombre positif devant le terme de degré 2!!

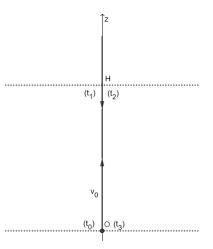
 $\Delta = v_0^2 - 2gH$, évidemment une différence car il peut ne pas y avoir de solutions pour v_0 trop petite...

 t_1 est la plus petite des deux dates : $t_1 = \frac{1}{g} \left(v_0 - \sqrt{v_0^2 - 2gH} \right) = 0$ et donc $t_2 = \frac{1}{g} \left(v_0 + \sqrt{v_0^2 - 2gH} \right) = 0$: $\Delta t_{\text{sup}} = \frac{2}{g} \sqrt{v_0^2 - 2gH}$

Il faut éliminer v_0 des équations : $v_0 = \frac{g}{2} \Delta t_{inf}$, puis $\frac{g^2}{4} \Delta t_{sup}^2 = \frac{g^2}{4} \Delta t_{inf}^2 - 2gH$.

Ce n'est pas du second degré, g se simplifie $:\frac{g}{4}\left(\Delta t_{\inf}^2 - \Delta t_{\sup}^2\right) = 2H$ (calcul !! : limiter l'apparition de signes moins inutiles...) et finalement $g = \frac{8H}{\Delta t_{\inf}^2 - \Delta t_{\sup}^2}$.

On vérifie par analyse dimensionnelle rapide que ce n'est pas nécessairement faux... (m/s²)



4. Chute verticale 1D freinée par des frottements turbulents

a) <u>Référentiel</u> : Terre, galiléen

Système: Mobile {M;m}

Contrainte : Mouvement rectiligne => axe (Oz)

<u>BdF</u>: poids $\vec{P} = m\vec{g}$, $\vec{f} = -k v^2 \vec{u_z}$

 $\underline{\text{RFD}}: m\vec{a} = \vec{P} + \vec{f}$

Proj:
$$m\frac{dv}{dt} = mg - kv^2$$
 soit $\frac{dv}{dt} + \frac{1}{\alpha}v^2 = g$ (ou bien $\alpha \frac{dv}{dt} + v^2 = \alpha g$)

b) On raye les dérivées temporelles : $\frac{1}{\alpha}v_p^2 = g$ donc $v_p = \sqrt{\alpha g}$.

Sur cette dernière équation par exemple : $L.T^{-1} = \sqrt{[\alpha]L.T^{-2}}$, donc $[\alpha] = L$: α s'exprime en mètres.

c) On élimine $g: \frac{dv}{dt} + \frac{1}{\alpha}v^2 = \frac{1}{\alpha}v_p^2 \#$

d)
$$\frac{dv}{v^2 - v_p^2} = -\frac{1}{\alpha} dt$$
 : $\int_{v_0}^{v} \frac{dv}{v^2 - v_p^2} = -\frac{1}{\alpha} \int_{0}^{t} dt = -\frac{1}{\alpha} t$

e) Décomposition d'une fraction en éléments simples (très guidée) ; on identifie à partir du résultat : $b\left(\frac{1}{v-v_p}-\frac{1}{v+v_p}\right)=\frac{b}{v^2-v_p^2}(v+v_p-v+v_p)=\frac{2bv_p}{v^2-v_p^2}$ donc $b=\frac{1}{2v_p}$

f) On en déduit $\int_{v_0}^{v} \frac{dv}{v - v_p} - \int_{v_0}^{v} \frac{dv}{v + v_p} = -\frac{2}{\alpha} v_p t$. Les primitives sont à connaître, et puisque

 $v(t) > v_P$, $\forall t$ car freinage, pas besoin de valeur absolue dans le ln :

$$[\ln(v - v_P)]_{v_0}^{v} - [\ln(v + v_P)]_{v_0}^{v} = -\frac{2}{\alpha}v_P t \text{ soit } \left[\ln\frac{v - v_P}{v + v_P}\right]_{v_0}^{v} = -\frac{2}{\alpha}v_P t \text{ ou encore}$$

$$\frac{v-v_{P}}{v+v_{P}}\frac{v_{0}+v_{P}}{v_{0}-v_{P}}=e^{-2v_{P}t/\alpha}=f(t):(v-v_{P})(v_{0}+v_{P})=f(t)(v+v_{P})(v_{0}-v_{P})$$

$$v[(v_0+v_P)-f(t)(v_0-v_P)] = v_P(v_0+v_P)+f(t)v_P(v_0-v_P) = v_P[(v_0+v_P)+f(t)(v_0-v_P)] \#$$

$$\text{g)} \quad v(0) = v_{\scriptscriptstyle P} \frac{(v_{\scriptscriptstyle 0} + v_{\scriptscriptstyle P}) + 1 \cdot (v_{\scriptscriptstyle 0} - v_{\scriptscriptstyle P})}{(v_{\scriptscriptstyle 0} + v_{\scriptscriptstyle P}) - 1 \cdot (v_{\scriptscriptstyle 0} - v_{\scriptscriptstyle P})} = v_{\scriptscriptstyle P} \frac{2 \, v_{\scriptscriptstyle 0}}{2 \, v_{\scriptscriptstyle P}} = v_{\scriptscriptstyle 0} \ \, \text{et} \ \, v_{\scriptscriptstyle \infty} = v_{\scriptscriptstyle P} \frac{(v_{\scriptscriptstyle 0} + v_{\scriptscriptstyle P}) + 0 \cdot (v_{\scriptscriptstyle 0} - v_{\scriptscriptstyle P})}{(v_{\scriptscriptstyle 0} + v_{\scriptscriptstyle P}) - 0 \cdot (v_{\scriptscriptstyle 0} - v_{\scriptscriptstyle P})} = v_{\scriptscriptstyle P} \ \, : \text{cohérent.}$$

6. Skieur sur un tire-fesse

Référentiel : terrestre, galiléen

Système : skieur M de masse m

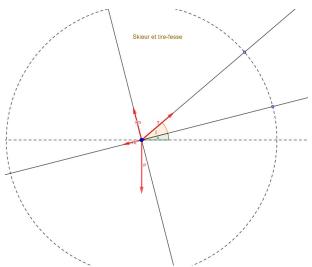
Contrainte : mouvement selon la piste, donc rectiligne ; de plus, il est uniforme : $\vec{a} = \vec{0}$

BdF : Poids \vec{P} , traction de la perche \vec{T} ,

réaction normale \vec{R}_N , réaction tangentielle (frottements solides) \vec{R}_T , vérifiant la loi de Coulomb : glissement donc $R_T = f R_N$

PFD: $\vec{P} + \vec{T} + \vec{R}_N + \vec{R}_T = \vec{0}$

Projections: Axes selon le mouvement (Ox) et perpendiculaire au mouvement (Oy), les deux vers le haut.



Donc $\vec{R}_N = \begin{pmatrix} 0 \\ +R_N \end{pmatrix}$, $\vec{R}_T = \begin{pmatrix} -R_T \\ 0 \end{pmatrix}$ de façon évidente ; $\vec{T} = \begin{pmatrix} T\cos\beta \\ T\sin\beta \end{pmatrix}$ (classique) ; plus délicat pour le poids : $(\vec{P};\vec{u}_x) = \frac{\pi}{2} + \alpha$, donc $(\vec{P};\vec{u}_y) = \frac{\pi}{2} + \alpha + \frac{\pi}{2}$ soit $\vec{P} = \begin{pmatrix} -P\sin\alpha \\ -P\cos\alpha \end{pmatrix}$ (Vérification : \vec{P} est bien plutôt vers l'arrière de chacun des vecteurs unitaires, d'où les signes).

$$\text{Donc} \begin{cases} -P\sin\alpha + T\cos\beta + o - R_T = o \\ -P\cos\alpha + T\sin\beta + R_N + o = o \\ R_T = f R_N \end{cases}, \text{ où il faut se débarrasser des réactions.}$$

Soit
$$-P\sin\alpha + T\cos\beta + o = f(P\cos\alpha - T\sin\beta)$$
: $T = mg\frac{\sin\alpha + f\cos\alpha}{f\sin\beta + \cos\beta}$

7. Peintre ingénieux

(a) Le peintre exerce sur la corde une force vers le bas $\vec{F} = -F\vec{u}_z$ (on choisit l'orientation de l'axe vertical vers le haut). D'après la troisième loi (actions réciproques), la corde exerce donc en retour la force $\vec{F}' = -\vec{F} = +F\vec{u}_z$.

L'autre extrémité de la corde exerce sur la chaise la force, transmise par la poulie, $\vec{F}' = -\vec{F} = +F \vec{u}_z$.

Utilisons le système {peintre + chaise} : le PFD donne $(M+m)\vec{a} = (M+m)\vec{g} + 2\vec{F}'$, soit en projetant sur l'axe(Oz): $a_z = -g + \frac{2F}{M+m}$ soit $\underline{a_z} = +3,14 \text{ m/s}^2$: le peintre parvient bien à s'élever.

(b) Choisissons maintenant le système {chaise}, dont l'accélération est la même. BdF: poids, force peintre / chaise vers le bas, force corde / chaise vers le haut. Le PFD s'écrit: $m\vec{a} = m\vec{g} + \vec{F}_{P/Ch} + \vec{F}'$ soit $F_{P/Ch,z} = F - m(a_z + g) = +486 \,\mathrm{N}$. Cette force est inférieure au poids du peintre.

8. Coup franc

1. a) La seule force qui s'exerce sur le ballon au cours du mouvement étant son poids, on en déduit que $\vec{a} = \vec{g}$ en utilisant la deuxième loi de Newton.

Ceci entraı̂ne que $\ddot{x} = 0$, puis $\dot{x} = V_0 \cos \alpha$, puis $x(t) = (V_0 \cos \alpha)t$ pour le mouvement sur l'axe

$$(Ox)$$
, et $\ddot{y} = -g$, puis $\dot{y} = -gt + V_0 \sin \alpha$, puis $y(t) = -\frac{g}{2}t^2 + (V_0 \sin \alpha)t$ en projection sur l'axe

(Oy). L'équation de la trajectoire, dans le plan $\overline{(Oxy)}$ est donc :

$$y(x) = -\frac{g}{2V_0^2 \cos^2 \alpha} x^2 + (\tan \alpha)x$$
.

On pourrait vérifier qu'il n'y a pas de mouvement sur (Oz).

- **b)** Le ballon passe au-dessus du mur si $y(x_{\text{mur}}) \ge 1,90 \text{ m}$. An $y(x_{\text{mur}}) = 2,17 \text{ m}$, donc <u>le ballon</u> passe au-dessus du mur.
- **c)** Le tir est cadré si $y(x_{\text{but}}) \le 2,44 \text{ m}$. An $y(x_{\text{but}}) = 1,73 \text{ m}$, donc <u>le tir est cadré</u>.
- **2. a)** On prend maintenant en compte la force de frottement \vec{F} , ce qui donne, en appliquant la deuxième loi de Newton: $\vec{P} + \vec{F} = m\vec{a}$. Projections sur (Ox) et (Oy) (en supposant toujours qu'il n'y a pas de mouvement sur (Oz)): $m\ddot{x} = -h\dot{x}(1)$ et $m\ddot{y} = -mg h\dot{y}(2)$.
- (1) s'écrit aussi $v_x + \tau \frac{dv_x}{dt} = 0$ et admet une solution du type $Ae^{-\frac{t}{\tau}}$, où A est une constante qui

se détermine par la condition $v_x(0) = V_0 \cos \alpha$: on obtient $v_x(t) = V_0 \cos \alpha e^{-\frac{t}{\tau}}$ (3).

(2) s'écrit $v_y + \tau \frac{dv_y}{dt} = -g\tau$ et admet pour solution $Be^{-\frac{t}{\tau}} + C$ où B est une constante à déterminer par les conditions initiales et C une solution particulière de (2).

En cherchant C sous la forme d'une constante, on trouve $C = -g\tau$, puis en utilisant la condition

 $v_y(0) = V_0 \sin \alpha$, on trouve $B = V_0 \sin \alpha + g\tau$, ce qui donne $v_y(t) = \left[V_0 \sin \alpha + g\tau\right] e^{-\frac{t}{\tau}} - g\tau$ (4). On intègre alors (3) et (4) en tenant compte des conditions initiales x(0) = y(0) = 0:

$$x(t) = V_0 \tau \cos \alpha \left[1 - e^{-\frac{t}{\tau}} \right] \operatorname{et} \left[y(t) = \left(V_0 \tau \sin \alpha + g \tau^2 \right) \left(1 - e^{-\frac{t}{\tau}} \right) - g \tau t \right]$$

- Les constantes d'intégrations ne sont pas toujours nulles!
- **b)** On utilise la première équation pour exprimer $t: t = -\tau \ln \left(1 \frac{x}{V_0 \tau \cos \alpha}\right)$ et on reporte cette

expression dans la deuxième : $v(x) = \left(\tan \alpha + \frac{g\tau}{V_0 \cos \alpha}\right) x + g\tau^2 \ln \left(1 - \frac{x}{V_0 \cos \alpha}\right).$

- **c)** On calcule $y(x_{\text{mur}}) = 2{,}17 \text{ m}$ et <u>le ballon passe donc au-dessus du mur</u>.
- **d)** $y(x_{\text{but}}) \approx 1,73 \text{ m}$: <u>le tir est cadré</u>. On constate que les frottements ont peu d'influence sur ce mouvement (car il n'est pas très rapide donc la force de frottement est restée assez faible).