PCSI 2 Physique

Interrogateur: semaine 16: 24/02

Oscillateurs mécaniques (masse-ressort)

Exercices

Régime libre, excitation sinusoïdale forcée.

Dynamique du point

Exercices

Énergétique du point matériel

Cours et exercices

Pas de notion de vecteur gradient pour l'instant ; pas d'utilisation du TEC en exos, seulement du TEM.

Puissance d'une force, vocabulaire : motrice/résistante. Travail élémentaire, travail ; calcul de W pour une force vectoriellement constante, pour une force perpendiculaire au déplacement, pour une force de norme constante opposée au déplacement. Conservativité d'une force.

Introduction théorique de l'énergie : théorèmes de la puissance cinétique et intro de l'énergie cinétique, TEC.

Énergies potentielles : relation fondamentale avec la force conservative $dE_p = -\delta W$ et intégration . Calcul de l'énergie potentielle de pesanteur, de l'énergie potentielle élastique (on passe temporairement par les coordonnées sphériques).

Énergie mécanique : définition, TEM, cas de conservation et cas de non conservation.

Applications: ski sans frottements (piste de forme quelconque); pendule simple : quelle vitesse initiale pour atteindre $\pi/2$ à partir de la position d'équilibre ?

Théorème de la puissance mécanique : obtention de l'ED du mouvement. *Application* : pendule simple.

Problèmes mixtes (énergie et RFD) : contexte = recherche d'une force qui ne travaille pas. *Applications* : distance de freinage d'un véhicule qui pile ; point matériel lâché sans vitesse au sommet d'un dôme hémisphérique sans frottements : angle de décrochage.

Evolution conservative à un degré de liberté (Ep totale (x) donnée, équation ou courbe) : relation $E_p{'}(x) = -F_x(x)$ à savoir démontrer, positions d'équilibre et stabilité, pulsation des petites oscillations au voisinage d'un équilibre stable (si $E_p{'}{'}(x_{\rm \acute{e}q}) \neq 0$).

Limites du mouvement : calcul de Em avec les conditions initiales, tracé de Em constante, zones autorisées du mouvement, lecture de l'Ec par différence.

Mouvement d'une particule dans des champs uniformes et stationnaires

Cours

Pas de notion de vecteur gradient pour l'instant

Force de Lorentz. Sources des champs \vec{E} et \vec{B} ; unités SI des champs. Comparaison de la force de Lorentz électrique avec le poids (particule α , pour un champ E=1 V/m). Puissance nulle de la force magnétique ; règle des 3 doigts pour le produit vectoriel.

Énergie potentielle électrique ; vitesse acquise par une particule (non relativiste) soumise à une ddp, condition de validité (signe de la charge et classement des potentiels, sens de la tension positive et signe de q).

Mouvement dans un champ \vec{E} uniforme et stationnaire : intégrations vectorielles, équations horaires pour la vitesse et la position, trajectoire et tracé selon le signe de la charge. Notion de déviation.

Relation entre le champ \vec{E} uniforme (selon $+\vec{e_x}$) et la tension : obtention de V'(x)=-E, intégration, relation entre E, D (distance) et U (tension positive), sens de \vec{E} et sens de U.