TD 26 – Machines thermiques cycliques

1. Un petit moteur

Un étudiant fabrique pour son TIPE un moteur fonctionnant entre de l'eau bouillante à pression atmosphérique, et l'atmosphère à 20°C.

Il ne peut espérer obtenir qu'un rendement r=10%, r étant défini comme le rapport de l'efficacité de son moteur sur l'efficacité de Carnot.

Combien cela va-t-il lui coûter en chauffage (en joules) pour produire un travail de 100 J?

2. Augmentation du rendement de Carnot

Pour augmenter au mieux le rendement d'un moteur réversible, est-il préférable d'augmenter de 10 °C la température de la source chaude ou de diminuer de 10 °C celle de la source froide ?

3. Puissance fournie à un congélateur

Dans une pièce à T_0 =20 °C, l'intérieur d'un congélateur est à T=-19 °C. Pour arriver à maintenir cette température, il est nécessaire d'enlever, par transfert thermique, $400 \, \text{kJ/h} = |\mathring{Q}|$ à l'intérieur du congélateur. L'opération est supposée réversible.

- (a) Calculer le transfert thermique par heure \mathring{Q}_0 fourni à la pièce par le congélateur.
- (b) Déterminer la puissance mécanique P à fournir au congélateur.

4. Réfrigérateur tritherme

- a) Rappeler le schéma de principe d'un réfrigérateur ditherme, alimenté par du travail.
- b) En camping, on utilise parfois des réfrigérateurs trithermes, où un bouilleur, assimilable à un thermostat à la température T_B , envoie au fluide du réfrigérateur un transfert thermique Q_B à la place du travail W.
 - Écrire les deux principes du réfrigérateur tritherme pour un cycle.
- c) Définir l'efficacité e de ce réfrigérateur. En éliminant l'un des transferts thermiques, obtenir son expression en fonction de trois températures différentes T_B , T_1 , T_2 , de Q_B et de l'entropie créée à chaque cycle.
- d) En déduire son efficacité maximale en fonction des températures. Que peut-on dire du cycle machine si $e=e_{max}$? A.N. pour $T_B=150\,^{\circ}\text{C}$; $T_1=8\,^{\circ}\text{C}$; $T_2=25\,^{\circ}\text{C}$
- e) Comparer son efficacité maximale avec celle d'un réfrigérateur ditherme fonctionnant entre les mêmes températures.

5. Comparaison

Un moteur fonctionnant entre deux sources de chaleur, l'une à T_F =400 K , l'autre à T_C =650 K , produit 500 J=|W| par cycle, pour 1500 J=|Q_C| de transfert thermique fourni.

- (a) Comparer son efficacité e à celle d'une machine de Carnot fonctionnant entre les deux mêmes sources. Conclure.
- (b) Calculer le transfert thermique Q_F reçu par le système provenant de la source froide.
- (c) Calculer l'entropie créée par cycle, notée S_c .
- (d) Montrer, pour une dépense identique, que la différence entre le travail fourni par la machine réelle et la machine de Carnot vérifie $W_{\rm réel} W_{\rm rév} = T_f S_c$.

6. Chauffage d'une serre

On souhaite maintenir la température d'une serre à $T_1 = 293 \text{ K}$. L'air extérieur est à la température $T_2 = 283 \text{ K}$. Dans ce but, on utilise une chaudière à la température $T_3 = 600 \text{ K}$.

On décide de ne pas utiliser directement la chaudière pour chauffer la serre mais le dispositif suivant : la chaudière fournit un transfert thermique $Q_3 > 0$ à l'agent thermique d'un moteur réversible fonctionnant entre la chaudière à T_3 et l'air extérieur à T_2 . Le travail récupéré est utilisé pour actionner une pompe à chaleur réversible fonctionnant entre l'air extérieur à T_2 et l'intérieur de la serre à T_1 . On note T_2 le transfert thermique algébrique de l'air extérieur vers l'agent thermique de la pompe.

- 1. Reporter sur un schéma de principe les différents échanges énergétiques algébriques en jeu lors du chauffage.
- **2.** Exprimer le travail algébrique W reçu par le moteur en fonction de Q_3 , T_2 et T_3 .
- **3.** Exprimer le transfert thermique algébrique Q_1 entre l'intérieur de la serre et l'agent thermique de la pompe en fonction de W, T_1 et T_2 .
- **4.** Définir puis exprimer l'efficacité e de l'ensemble du dispositif de chauffage en fonction de T_1 , T_2 et T_3 .

7. Moteur ditherme entre deux pseudo-sources

On dispose de deux récipients contenant chacun une masse $m=10^3\,\mathrm{kg}\,$ d'eau liquide. L'un est à la température $T_{1,0}=87\,^\circ\mathrm{C}$, l'autre à la température $T_{2,0}=7\,^\circ\mathrm{C}$.

Chacun de ces récipients voit sa température varier et sert donc de « pseudo-source » à un moteur thermique <u>réversible</u>. Soient T_1 et T_2 les températures, variables, de chaque récipient.

Au cours d'un cycle de la machine, la variation de température de l'eau des récipients est supposée infinitésimale : on les note respectivement dT_1 et dT_2 .

On donne la capacité thermique massique de l'eau liquide : $c = 4,18 \,\mathrm{kJ.kg^{-1}}$. K⁻¹.

- (a)Relier les transferts thermiques infinitésimaux reçus par le fluide du moteur à chaque cycle, δQ_1 et δQ_2 , avec les variations de température des pseudo-sources et avec c.
- (b)Démontrer qu'on obtient $\frac{dT_1}{T_1} + \frac{dT_2}{T_2} = 0$.
- (c)En intégrant l'équation différentielle précédente entre l'état initial et l'état final à la température T_F , déterminer l'expression de T_F en fonction des données. AN.
- (d)Pourquoi le moteur cesse-t-il alors de fonctionner?
- (e)Effectuer un bilan énergétique sur l'ensemble du fonctionnement du moteur, obtenir notamment le travail qu'il fournit à l'environnement. Pourquoi est-ce un travail maximal ?

8. Congélateur en détresse

Un congélateur neuf a un coefficient d'efficacité e = 2,0. Un appareil dans lequel on a laissé s'accumuler une couche de glace a une efficacité réduite. On suppose que l'effet de la couche de glace est de multiplier par 2 l'entropie créée pour un même transfert thermique pris à la source froide. L'intérieur du congélateur est à -20° C et la pièce dans laquelle il se trouve à 19° C.

- 1. Calculer numériquement α , rapport entre l'efficacité du congélateur neuf et l'efficacité d'une machine réversible fonctionnant avec les mêmes sources.
- 2. Montrer que ce rapport devient, pour le réfrigérateur usagé : $\alpha' = \frac{\alpha}{2-\alpha}$. Calculer α' et l'efficacité réduite e'.

9. Étude entropique d'une machine frigorifique

- 1. On considère un point A_0 de la courbe d'ébullition à la température T_0 . On note l'entropie massique du fluide en ce point s_0 .
 - a) Quel est l'état du fluide en A_0 ?
 - b) Représenter en coordonnées P, v la courbe de saturation ainsi que les isothermes d'Andrews T_C , T_0 et T_1 telles que $T_0 < T_1 < T_C$.
 - c) Évaluer, en fonction de s_0 et des températures, l'entropie massique du fluide au point A_1 de la courbe d'ébullition à T_1 en supposant la capacité thermique massique c_L du liquide constante le long de la courbe d'ébullition.
 - d) À partir de A_0 , on effectue une vaporisation isotherme jusqu'au point $M_{(x)}$ où x est le titre massique en vapeur. On note l_0 l'enthalpie massique de vaporisation de l'eau à T_0 . Déterminer l'entropie massique $s_{0,x}$ du fluide en $M_{(x)}$.
- 2. On considère le cycle de transformations réversibles *DABCD* réalisé à partir du point *D* sur la courbe de rosée.
 - DA: liquéfaction isotherme complète à la température T_1
 - AB: détente adiabatique jusqu'à la température T_0 et un titre en vapeur x_B
 - BC: vaporisation isotherme jusqu'au titre en vapeur x_C défini par:
 - CD: compression adiabatique C est sur l'adiabatique passant par D
 - a) Représenter le cycle sur le diagramme P, v
 - b) Calculer les titres x_B et x_C en fonction de c_L , T_0 , T_1 et des enthalpies massiques de vaporisation l_0 et l_1 .
 - c) Calculer les échanges thermiques Q_0 et Q_1 lors des transformations BC et DA.
 - d) Calculer le travail total *W*, grâce au premier principe.
 - e) Définir, exprimer en fonction des données, puis calculer numériquement l'efficacité de la machine frigorifique : T_0 =-5°C et T_1 =11°C .

10. Chauffage d'une serre

Un dispositif plus performant?

Reprendre ce problème (exo 6) et conclure, avec comme seule différence le moteur fonctionnant entre la chaudière <u>et la serre</u>, dans le but de récupérer son transfert thermique vers la source froide pour chauffer la serre.

On souhaite maintenir la température d'une serre à $T_1 = 293 \text{ K}$. L'air extérieur est à la température $T_2 = 283 \text{ K}$. Dans ce but, on utilise une chaudière à la température $T_3 = 600 \text{ K}$.

On décide de ne pas utiliser directement la chaudière pour chauffer la serre mais le dispositif suivant : la chaudière fournit un transfert thermique $Q_3 > 0$ à l'agent thermique d'un moteur réversible fonctionnant entre la chaudière à T_3 et l'air extérieur à T_2 . Le travail récupéré est utilisé pour actionner une pompe à chaleur réversible fonctionnant entre l'air extérieur à T_2 et l'intérieur de la serre à T_1 . On note T_2 le transfert thermique algébrique de l'air extérieur vers l'agent thermique de la pompe.

- 1. Reporter sur un schéma de principe les différents échanges énergétiques algébriques en jeu lors du chauffage.
- **2.** Exprimer le travail algébrique W reçu par le moteur en fonction de Q_3 , T_2 et T_3 .
- **3.** Exprimer le transfert thermique algébrique Q_1 entre l'intérieur de la serre et l'agent thermique de la pompe en fonction de W, T_1 et T_2 .
- **4.** Définir puis exprimer l'efficacité e de l'ensemble du dispositif de chauffage en fonction de T_1 , T_2 et T_3 .

11. Cycle machine

On considère le cycle suivant, suivi par une quantité n d'air : $F \rightarrow B \rightarrow C \rightarrow F$, où

- $F \rightarrow B$ est une compression adiabatique réversible ;
- $B \rightarrow C$ est une isobare monotherme à la température T_c , température finale de cette transformation ;
- $C \rightarrow F$ est une isochore monotherme à T_F , température finale.

On note $a = \frac{P_{\text{max}}}{P_{\text{min}}}$ le rapport de compression du cycle.

- 1. Tracer l'allure du cycle dans un diagramme de Clapeyron, en déduire la nature de la machine et donner son schéma de principe.
- 2. Calculer T_C et T_B en fonction de a, γ et T_F . Identifier les étapes du cycle où ont lieu les transferts Q_C et Q_F .
- 3. Obtenir l'efficacité e de la machine en fonction de a et de y.
- 4. Prouver que $\forall \gamma$, a>1, e est inférieure à l'efficacité de Carnot.
- 5. Expliquer l'origine de la différence ; affiner en déterminant l'entropie créée par cycle.