
DM 6 – Circuit RL d'ordre 2 POUR LUNDI 17 NOVEMBRE

(Q. 9 et 10 après le cours sur les circuits d'ordre 2)

Ci-contre:

On considère le circuit ci-après. L'interrupteur K est ouvert depuis très longtemps et on le ferme à l'instant t = 0.

- 1. Déterminer les valeurs des intensités i_4 , i_1 , i_2 et i_3 à l'instant $t = 0^+$.
- 2. Déterminer les valeurs de la tension s et des intensités i_2 , i, i_1 , i_3 et i_4 lorsque t tend vers l'infini.
- 3. Déterminer les relations entre s et i_3 puis entre s et i_4 .
- **4.** Établir la relation entre R, L, s, $\frac{ds}{dt}$ et $\frac{di}{dt}$.
- **5.** Même question pour R, L, i_2 , $\frac{di_2}{dt}$ et $\frac{di}{dt}$.
- **6.** Déterminer la relation entre $\frac{dE}{dt}$, R, L, s, i_2 et $\frac{ds}{dt}$.
- 7. Établir la relation entre R, L, s, $\frac{ds}{dt}$, $\frac{d^2s}{dt^2}$, $\frac{dE}{dt}$ et $\frac{d^2E}{dt^2}$.
- 8. En déduire l'équation différentielle vérifiée par s sachant que le générateur de tension est idéal de tension à vide E.
- 9. En déduire l'expression de s(t) en ne cherchant pas à déterminer les constantes d'intégration.
- 10. Donner une relation entre les deux constantes d'intégration.