I – Défauts des instruments de mesure

A / Voltmètre

1. La tension aux bornes de K est nulle car K=fil idéal : on a évidemment (argumentation : maille, ou différence de potentiel, ou V et E en dérivation) $U=U_0=E$.

2. Il est branché en dérivation avec le dipôle D dont on cherche la tension. Pour ne pas perturber la mesure, un courant négligeable doit entrer dans le voltmètre : i_v =0 pour que $i-i_v=i$, courant qui entrerait dans D en l'absence du voltmètre.

En assimilant D à une résistance R (ou une impédance pour généraliser), de conductance G=1/R, le théorème du diviseur de courant s'applique : $i_v = \frac{G_v}{G + G_v}i$ qui ne peut être nul que si $G_v = 0$ donc que si R_v est infinie.



3. Il n'y a aucune différence : la résistance du voltmètre étant infinie, il est équivalent à un interrupteur ouvert, et aucun courant ne circule. La tension aux bornes de R est donc nulle, et on retrouve $U=U_0=E$.

(On peut éventuellement obtenir $i = \frac{E}{R + R_v} = 0$ car R_v est infinie, qui anticipe la question 4).

4. Si K est fermé, le voltmètre reste en dérivation avec E par définition de la dérivation : $U=U_0=E$

Si K est ouvert, il y a maintenant deux résistances en série dans le circuit et le diviseur de tension s'applique, E étant la tension principale (aux bornes de l'ensemble) : $U = E \frac{R_V}{R+R}$

5. On a obtenu $U_0 = E$, donc $U = \frac{U_0}{2} \Leftrightarrow \frac{R_V}{R + R_V} = \frac{1}{2}$, donc $R = R_V$

6. $\frac{R_V}{R+R_V} = \frac{9}{10} \Leftrightarrow 10 \, R_V = 9 \, (R+R_V) \Leftrightarrow R = \frac{1}{9} \, R_V$: nettement plus faible, donc plus facile à obtenir, car pour un voltmètre de bonne qualité, R_V est très élevée (plusieurs $M\Omega$).

B/Ampèremètre

1. La résistance de l'ampèremètre est alors nulle, pour ne pas ajouter de tension parasite dans le circuit qui modifierait son comportement.

 I_0 traverse R_0 puisque K est ouvert, et R_0 est en dérivation avec E, on a donc (unicité de la tension et loi d'Ohm) : $E = R_0 I_0$ soit $I_0 = \frac{E}{R_0}$.

2. a. On peut affirmer que l'ajout en série de l'association en dérivation de résistances R et R_A , très petites devant R_0 , ne changera pas l'intensité délivrée par la source, puis appliquer le diviseur de courant, ou bien faire le calcul directement puisque l'intensité est supposée connue :

La tension commune aux deux résistances en dérivation est $R_A \frac{I_0}{2} = R I_R$ avec une notation évidente, donc

$$I_R = \frac{R_A}{R} \frac{I_0}{2}$$
. La tension aux bornes de R_0 est donc (loi des nœuds et loi d'Ohm) : $R_0 \left(I_R + \frac{I_0}{2} \right) = R_0 \frac{I_0}{2} \left(\frac{R_A}{R} + 1 \right)$, et

l'additivité des tensions (ou la loi des mailles) conduit à $E = R_0 \frac{I_0}{2} \left(\frac{R_A}{R} + 1 \right) + R_A \frac{I_0}{2}$ (on ne prend bien sûr pas

l'expression contenant R pour éviter d'avoir R à la fois au numérateur et au dénominateur!), c'est-à-dire

$$E = \frac{I_0}{2} R_0 \left(\frac{R_A}{R} + 1 \right) \text{ car } R_0 \left(\frac{R_A}{R} + 1 \right) > R_0 \gg R_A.$$

Mais puisque $E=R_0I_0$, on trouve $1=\frac{1}{2}\left(\frac{R_A}{R}+1\right)$: $2=\frac{R_A}{R}+1$ donc $R=R_A$.

PCSI2 2025/26 – Correction DS n°2

b. On utilise pour R une résistance réglable connue (boîte de décade de résistances) de valeurs faibles (quelques ohms). On note la mesure de l'intensité I_0 , interrupteur K ouvert. On règle R jusqu'à lire $\frac{I_0}{2}$ dans l'ampèremètre.

On note la valeur correspondante de R, qui vaut donc R_A .

3. Sans R_0 , il y aurait contradiction si l'ampèremètre est idéal, donc équivalent à un fil : la source de tension serait court-circuitée.

Avec un ampèremètre de résistance R_A très petite, l'intensité délivrée par la source serait très importante, et risquerait de dégrader l'ampèremètre.

De plus, le choix de R_0 équivaut au choix de I_0 , donc permet de voir si la résistance interne R_A de l'ampèremètre dépend ou non de l'ordre de grandeur de l'intensité qui le traverse (du mA jusqu'à l'ampère).

III - DÉCHARGE D'UN CONDENSATEUR

- 1. $i_c = C \frac{du_c}{dt}$ (élément de démonstration non demandée : vient de la dérivation temporelle de $q = Cu_c$)
- 2. On a la puissance reçue $P=u_C i_C$ soit $P=C u_C \frac{du_C}{dt} = \frac{d}{dt} \left(\frac{1}{2} C u_C^2 \right)$.

Toute l'énergie reçue est stockée dans le condensateur donc, avec le lien entre énergie et puissance : $\frac{dE_c}{dt} = \frac{d}{dt} \left(\frac{1}{2} C u_o^2 \right)$ ce qui conduit à $E_c = \frac{1}{2} C u_o^2 + cte$

 $\frac{dE_C}{dt} = \frac{d}{dt} \left(\frac{1}{2} C u_C^2 \right) \text{ ce qui conduit à } E_C = \frac{1}{2} C u_C^2 + \text{cte }.$

Comme l'énergie est nulle quand le condensateur est déchargé, donc quand sa tension u_c est nulle, la constante est nulle.

3. +Q est portée par l'armature positive, l'autre armature porte -Q. L'intensité est entrante du côté de l'armature positive. La tension est donc dirigée de -Q vers +Q (convention récepteur).

 $Q=Cu_C$ donc $u_C=Q/C$ que l'on remplace.

Le condensateur, initialement chargé avec une charge Q, se décharge dans une résistance R à partir de la date nulle. On note $\tau = RC$.

- 4. $E_C = \frac{(Q/2)^2}{2C} = \frac{1}{4} \frac{Q^2}{2C} = \frac{1}{4} E_{Co}$
- 5. On obtient aisément l'évolution de la tension $u_{\scriptscriptstyle C}(t) = u_{\scriptscriptstyle 0} \exp(-t/\tau)$, donc $E_{\scriptscriptstyle C}(t) = \frac{1}{2} C \left(u_{\scriptscriptstyle 0} \exp(-t/\tau)\right)^2$.

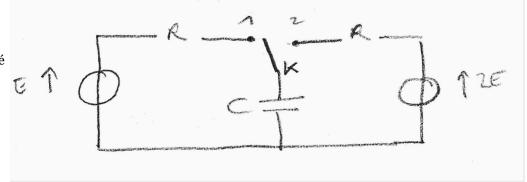
D'où $E_{C}(t)=E_{Co}\exp(-2t/\tau)$. On résout pour la valeur moitié : $1/2=\exp(-2t/\tau)$, soit $\ln 2=2t/\tau$ et finalement $t=\frac{\ln 2}{2}\tau$

IV - Reverse engineering circuit E,RC

1 et 2. Avec K sur la position 1, en régime permanent, la charge se termine, avec une intensité nulle (puisque

$$i(t) = C \frac{d u_C}{dt} = 0$$
) donc

 $u_C(t)$ atteint E, valeur initiale pour le transitoire suivant.



PCSI2 2025/26 - Correction DS n°2

En basculant K sur la position 2, $u_C(t)$ est bien sûr continue, et C est soumise à la tension 2E, qui sera atteinte à la fin du nouveau RP (intensité nulle pour la même raison).

3. D'après le graphique $\tau = RC = 10 \,\text{ms}$, date à laquelle la tangente initiale coupe l'asymptote horizontale.

En prenant $C=0.1\,\mu\text{F}$, on trouve $R=\frac{\tau}{C}=10^5\,\Omega=100\,k\Omega$ (ou bien $C=1\,\mu\text{F}$, $R=10\,k\Omega$ ou $C=10\,\mu\text{F}$, $R=1\,k\Omega$)

4. La SP est égale à $2E: u_C(t) = A \exp(-t/\tau) + 2E$, avec $u_C(0) = E$, donc E = A + 2E: A = -E et finalement $u_C(t) = E[2 - \exp(-t/\tau)]$

V – Diagramme de Fresnel

1. \vec{E} est le vecteur d'affixe $E\exp(j0)=E$ (la phase à l'origine est l'argument de l'amplitude complexe, et aussi l'angle du vecteur de Fresnel avec la demi-droite des réels positifs).

On lit $E=10\,\mathrm{V}$, $U_L=7\,\mathrm{V}$. Donc $u_L(t)=U_L\cos(\omega t+\varphi)$, avec $U_L=7\,\mathrm{V}$ et $\varphi=30\,^\circ$

Calculer la pulsation ω . $\omega = 2 \pi f = 100 \pi \text{ rad/s} = 314 \text{ rad/s}$

- 2. Le vecteur \vec{U}_R est simplement le vecteur \vec{BA} sur le graphique, puisque la loi des mailles est $e(t)=u_L(t)+u_R(t)$.
- 3. Voir cours : on attend également la démonstration du résultat pour la dérivation temporelle.

L'apparition du j ω doit faire penser à une rotation de +90° du vecteur \vec{U}_R vers le vecteur \vec{U}_L (quadrature avance de la tension sur l'intensité, donc sur la tension aux bornes d'une résistance parcourue par le même courant).

4. L'angle en B n'est pas un angle droit : ce n'est pas une bobine idéale, il ne peut donc s'agir que d'une bobine réelle.

Son vecteur de Fresnel va se décomposer en somme d'un vecteur colinéaire à \vec{U}_R : \vec{U}_r , lié à la résistance interne de la bobine, et d'un vecteur \vec{U}'_L , qui sera perpendiculaire aux deux autres.

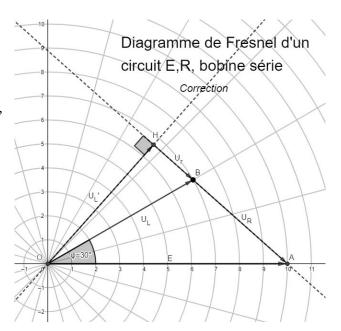
Donc:

- on prolonge la droite (BA)
- on trace sa perpendiculaire passant par O, on en déduit le point H, et donc les deux vecteurs de Fresnel de la bobine réelle.

On mesure $U'_L=6.6 \text{ V}$, $U_R=5.3 \text{ V}$ et $U_r=2.2 \text{ V}$,

donc avec les lois d'Ohm : $I = \frac{U_R}{R} = 0,11 \text{ A}$

$$r = \frac{U_r}{I} = 21\Omega$$
, et en module $U'_L = L\omega I$ donc $L = \frac{U'_L}{\omega I} = 0.20 \,\text{H}$.



Doublem de Schenkle