TD 14 — OSCILLATEURS

1. Modeéle atomique (faux !) de Thomson

Pour décrire I’interaction entre une onde lumineuse, caractérisée par le vecteur champ électrique

E(r) =k, cos(mt)a, et les électrons de la couche externe d’un atome, on utilise 1’hypothése de

I’électron élastiquement lié due a J. J. Thomson : 1’électron est rappelé vers le centre O de

I’atome par une force de rappel élastique isotrope F=—kOM , et il est freiné par une force de
frottement visqueux linéaire (coefficient /#). On précise que la force subie par une charge ¢

placée dans un champ électrique E est F, =g E (voir chapitre 15). Le poids est négligeable.

1. Etablir les équations du mouvement d’un électron quand il est excité par E(t) . On notera — e
k
et m la charge et la masse de I’électron et on posera: 2oa=— et @y =,[—.
m m
2. Démontrer qu’en régime permanent, 1’électron oscille parallélement a a .
3. Déterminer, en régime permanent, I’amplitude de x(7) et celle de [’accélération a,(?).
4. Cet atome est éclairé par de la lumiére blanche, composée de champs ayant toutes les

L

pulsations @ comprises entre ®; (rouge) et w, (violet), avec w, ~ 2Zw;. Sachant que w; et o
sont tous les deux trés inférieurs a w,, montrer que dans ces conditions I"amplitude de a.(¢)
est proportionnelle & ®>.

Sachant qu’un électron accéléré rayonne une puissance lumineuse proportionnelle au carré
de son accélération, expliquer alors la couleur du ciel...

2. Mouvement d’un palet

On étudie le rebond d‘un palet de masse m sur un dispositif constitué d'un ressort et d'un amortisseur
fixés & un patin mobile dont la masse est négligée devant celle du palet. On note kg la raideur du ressort, ly
sa longueur au repos et ar le coefficient de frottement fluide linéaire de I'amortisseur. Le palet glisse sans
frottement sur la surface horizontale du sol, qui compense intégralement son poids. L'axe sur lequel se
déroule le mouvement est noté Ox. Avant le rebond, le palet glisse sur le plan horizontal plan avec une
norme de vitesse constante v, dirigée vers le patin :v =—v, -a_. L'instant ou le palet atteint le patin mobile
d'abscisse initiale [y est choisi comme origine des temps. On étudie le mouvement pendant la phase ou le
palet est en contact avec le patin.

Montrer que I'équation du mouvement peut
se mettre sous la forme suivante, dans laquelle
on identifiera les constantes en fonction de m, ko,
lyet ar. Caractériser cette équation.

d’x  dx

F+Kﬁ+w§(x—xeq):0

ressort

amortisseur (o)
(kg5 fg) /

/ patin mobile

palet (m)

2. Les valeurs de m et k; sont fixes, la valeur de
oF peut étre ajustée. Montrer que différents 0
types de solutions sont possibles selon la valeur |

choisie pour le coefficient af. : s

Donner, en fonction de kg et m, I'expression de la valeur critique de o qui sépare les deux régimes du
systéme. On donne a o sa valeur critique. Déterminer la solution x(f) conforme aux conditions initiales.

Déterminer l'instant tyn pour lequel le ressort présente une longueur minimale Xy au cours de
I'évolution du systéme, puis exprimer cette longueur. Tracer l'allure de x(2).

Etudier la composante de vitesse v(t) lors du rebond, en supposant que le palet reste lié au patin.

On prend en compte le fait que le palet n'est pas lié au patin. A quel instant twax le palet se détache-t-il
du patin ? Quel est alors sa vitesse ?

. Faire le bilan énergétique du rebond. Définir et calculer le coefficient de restitution du choc.



3. Astronaute en mission

Dans l'espace en chute libre, le champ de pesanteur apparent est quasi nul et variable, et il est
impossible de controler le « poids » des astronautes a 1'aide d'une balance.

On utilise un fauteuil de masse m=35kg reposant sur un ressort vertical linéaire.

En l'absence de l'astronaute, le fauteuil oscille avec une période T,=1,50s.

Lorsque l'astronaute est assis dedans, le systéme oscille a la période T,=2,75s : quelle est la

masse M de l'astronaute ?

4. Deux ressorts

On considére deux ressorts linéaires identiques (k; L,) accrochés respectivement aux points du

plan A(0,a)et B(o,

—a) ou a est une distance constante donnée.

Un point matériel M (perle par exemple) de masse m a un mouvement contraint sur une tige
métallique confondue avec I'axe (Ox). Il est accroché aux extrémités libres de chacun des deux

ressorts.

Le plan (xOy) est horizontal. Tout frottement est négligé.

a) Faire un schéma de la situation pour une position x>0 quelconque de M.

b) Obtenir 'ED vérifiée par la fonction x(t) sans chercher a la résoudre.

¢) Déterminer la ou les positions d’équilibre de M. On distinguera des cas selon que a<L,

Oou non.

5. Réponse harmonique stabilisée

Le pendule simple de masse m représenté sur la figure
(doc. 1) est lié par deux ressorts identiques de raideur k et
longueur £; & vide.
Au repos, "abscisse x est nulle lorsque y = 0.
On fera I'approximation des petits angles pour étudier le
mouvement.
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1 * Quelle est la pulsation propre @, du systéme ?

2+ Le point A est mobile, animé d'un mouvement sinu-
soidal, se déplacant de y(1) = ¥, cos et par rapport a sa

k

position fixe précédente. On note £27 = =~
m

En supposant qu’un régime permanent est établi, détermi-
ner 'amplitude X, du mouvement de M, et le déphasa-
ge ¢ de son déplacement x{¢) par rapport au déplacement
¥(f) du point A. Tracer les variations de X, et ¢ en fonc-
tion de .

3 » Discuter la modification des résultats lorsqu’on tient
compte d'un amortissement du pendule, couplé avec une
palette plongeant dans un liquide, & I'origine d’une force
de frottement F =—h x¢,.

4 » On souhaite que le déplacement X, warie (a4 ¥,
donné) au plus de 10 % sur une plage de fréquence aussi
large que possible. Quelle valeur faut-il donner au facteur
de qualité de I"oscillateur pour réaliser cette condition 7



6. Suspension de voiture

La suspension d'un véhicule automobile est assurée par quatre systémes
identiques indépendants, montés entre le chassis et chaque arbre de roue, et
constitués chacun :

— d'un ressort hélicoidal linéaire de raideur k et de longueur a vide L, ;

— d'un amortisseur tubulaire a piston, paralléle au ressort, exercant une

force de frottement visqueux linéaire de coefficient d'amortissement A
proportionnelle a la vitesse verticale du chassis par rapport au centre
de la roue.

La masse totale de la voiture chargée est répartie sur les quatre
systémes, mais comme on se limite dans cette étude aux seuls
mouvements verticaux de la voiture, on peut considérer que le
systéme est un point matériel M de masse notée m, fixé en haut du

z Les roues de rayon R sont considérées comme rigides (on n'en

I Nk [| ressort, cette masse m étant en réalité le quart de celle de la voiture.
L

considere donc qu'une seule) ; la longueur du ressort dans état

77777777777 quelconque est notée L et on repere la position du systéme par son

altitude z par rapport au sol.

On note g l'intensité du champ de pesanteur terrestre.

1.

Préliminaire : relations générales

Quelle est la relation toujours vérifiée (quel que soit le mouvement du systeme) entre z et
L?

A quel vecteur unitaire correspond le vecteur unitaire intervenant dans la définition de la
force de rappel élastique ?

Le véhicule étant immobile, obtenir la longueur L ;, duressort et l'altitude Zg,
correspondante (« garde au sol »).

Le chassis est abaissé d'une hauteur h par rapport a cette position d'équilibre, puis
brusquement libéré sans vitesse initiale.

a) Etablir 'équation différentielle vérifiée par la position z(t) du systéme par rapport
au sol.

La passer sous forme canonique pour obtenir la pulsation propre W, du systéme et le
facteur de qualité Q en fonction des constantes données.

b) L'amortisseur a été réglé de maniere a obtenir un retour a la position d'équilibre le
plus bref possible, lorsque la masse totale est seulement celle de la voiture :

m:%m 100kg .

Calculer la valeur de A en fonction de m et k.

¢) Déterminer alors l'expression compléte de la solution z(t) en fonction de Z.,, het

w,.

La méme expérience, dans les mémes conditions initiales, est réalisée avec dans la voiture
une famille corpulente : la masse du systeme devient alors

m':m+%><(150+90+80+80)kg,



Déterminer alors le nouveau facteur de qualité et la solution compléte z(t ). Cette
situation est-elle plus ou moins confortable que la précédente ?

5. Levéhicule roule a vitesse v constante sur un sol en moyenne horizontal mais gondolé :
l'altitude du sol en fonction de I'abscisse horizontale x s'exprime par Z (X )=Z scos(K X

. 2 . . . ., '
ot K==" estla pulsation spatiale du motif dessiné par le sol et A la longueur d'onde de

A

ce motif.

a) Justifier brievement qu'en négligeant la dimension de la roue par rapporta A, on

peut écrire que le bas des roues se trouve, en fonction du temps, a I'altitude du sol

z (t)=Z jcos(wt), avec w=K v .

On note maintenant z (t) l'altitude de la voiture par rapport au niveau moyen du sol.

b)

c)

d)

e)

Démontrer que la coordonnée sur z de la force de frottement s'écrit maintenant
f,=— A(z—Zs) . Adapter les autres lois trouvées précédemment a la nouvelle situation.

Obtenir I'équation différentielle vérifiée par z (t) en fonctionde Z.,de Z. qu'onne
calculera pas, et des constantes (introduire Z.,, altitude & I'équilibre lorsque z =0,
ainsi que W, et Q).

On définit la variable u(t)=z(t)-z eq :onaalors =2 et de méme pour les dérivées
secondes.

On cherche pour la fonction u, une solution en régime établi, donc sinusoidale de
méme pulsation que l'excitation, de la forme u(t)=U cos(wt+ @) .

Passer dans les complexes pour obtenir I'expression de la fonction de transfert définie
qoY
par B.=~ g

Obtenir le diagramme de Bode pour le gain et caractériser le filtre obtenu.

Sur les pistes du Sahel, les touristes roulent dans leur voiture de location a 40 km/h,
voire moins, parce qu'ils ont peur, alors que les locaux roulent sans hésitation a une
vitesse de 90 km/h. Expliquer.

7. Equation proies — prédateurs (de Volterra-Lotka)

On considere deux especes animales en interaction entre elles, mais, pour simplifier, supposées
isolées du reste du monde : les proies et les prédateurs.




On considére le modéle simplifié suivant :

* Enlabsence de proies, la population des prédateurs (renards polaires par exemple)
décroit exponentiellement.

* Enlabsence de prédateurs, la population des proies (lievres arctiques par exemple) se
reproduit et croit exponentiellement — la constante de temps étant éventuellement
différente de celle des prédateurs.

» Laprésence de prédateurs tend a faire décroitre la population de proies,
proportionnellement au produit des deux populations.

» Laprésence de proies tend a favoriser la multiplication des prédateurs, et aboutirait a
leur croissance exponentielle, proportionnellement aux deux populations.

Le systeme d’équations adimensionné (on raisonne sans unité) est donc le suivant, ou ’on note
x(t) la population de proies et y(t) celle des prédateurs.

x(a=By)
ou (a,B,8,y) sont 4 constantes positives.

dt
dy
—_ = 5 —
i y(6x—y)

a) Justifier le systeme obtenu avec les 4 énoncés de la description du modele de Volterra-
Lotka.

b) Un systeme de deux équations différentielles couplées d’ordre 1 sur deux fonctions x et y
peut se découpler et se ramener a deux équations différentielles d’ordre 2 indépendantes
sur chacune des fonctions.

Obtenir I'’équadiff (non linéaire) vérifiée par les proies seules.

¢) On suppose qu'un régime permanent (point fixe : les deux populations sont constantes)
existe, différent de (0,0) : obtenir 'expression des deux populations constantes en
fonctionde (a,f,8,y) .
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