
DM CHUTES LIBRES       CORRECTION

A/ Parabole de sûreté

1. Voir cours : z (x )=tanα x− g2
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4. On arrange l’équation (forme canonique) : z0=x0 t−
x0

2

4h
−
x0

2

4 h
t2⇔

x0
2

4h
t2−x 0t+z0+

x0
2

4h
=0  

ou encore (on enlève les dénominateurs) : x0
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Il y a au moins une solution (ou deux) ssi le discriminant est positif ou nul : 
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5. et 6. Parabole de concavité vers le bas, maximale et valant h en x0=0 , donc symétrique 
par rapport à l’axe des z0 . Tous ceux qui sont en-dessous sont susceptibles d’être touchés 
par le boulet. Inversement, ceux qui sont au-dessus seront épargnés quel que soit l’angle 
de tir.

B/ Introduction à la balistique extérieure
1. Cas (a) : frottements négligés

a) Référentiel : terrestre, galiléen ; Système : (M;m) ; Contrainte : aucune. BdF : Poids 
seul
RFD : ma⃗= P⃗⇔ a⃗= g⃗ , mvt à vecteur accélération constant, qu’on intègre donc.
V⃗= g⃗ t+c⃗te . Avec la CI sur la vitesse, on trouve V⃗= g⃗ t+V⃗ 0 .

On intègre une deuxième fois pour obtenir le vecteur position : O⃗M= g⃗ 1
2
t 2+V⃗ 0t+ c⃗te  où 



la constante est nulle car M passe par l’origine à la date nulle.

b) Lors du retour au sol, on a y=0  : il faut donc projeter sur les axes.

De façon évidente V⃗ 0=(V 0cos A0

V 0 sin A0
)  et g⃗=( 0

−g) , ce qui donne y=− 1
2
gt 2+V 0 sin A0t .

La date de retour au sol est la solution non nulle de l’équation soit t S=
2V 0 sinA0

g
, 

qu’on remplace dans les projections du vecteur vitesse : V⃗ S=( 0+V 0 cos A0

−gt S+V 0sin A0
)  soit 

V⃗ S=( V 0cos A0

−V 0 sinA0
) .

c) On a Em=E c+E pp  avec Epp=mgy  ici mais qui s’annule au début et à la fin du 
mouvement.

Donc Em(0)= 1
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Elle se conserve car il n’y a pas de frottements donc pas de forces non conservatives.

2. Cas (b) : frottements visqueux, de forme −αV⃗

a) L’étude est la même avec une force supplémentaire, d’où la RFD ma⃗=m g⃗−α V⃗ , puis 

l’ED d’ordre 1 m dV⃗
dt

+α V⃗=m g⃗ .

La constante de temps τ=m
α

 apparaît dans la forme canonique de l’ED, ainsi que la 

vitesse limite, V⃗ ∞=τ g⃗  égale à la solution particulière constante de l’équation.

b) V⃗ ∞  est comme g⃗  verticale vers le bas : on a donc A∞=(Ox ,V⃗ ∞)=− π
2

.

c) Même démarche qu’à la partie précédente : O⃗M=−τ (V⃗ 0−V⃗ ∞)e
−
t
τ+V⃗ ∞t +c⃗te , qui doit 

s’annuler à la date nulle donc O⃗M=τ (V⃗ 0−V⃗ ∞)(1−e
− t
τ)+V⃗ ∞ t , puis 

y=τ (V 0sin A0+τ g)(1−e
− t
τ )−τ gt .

L’exponentielle décroissante est alors négligeable devant 1 et l’équation devient 

V 0sin A0+τ g=gt  soit t S=τ (1+
V 0sin A0

τ g ) .

d) On a alors Em(t S)=
1
2
mV ∞

2= 1
2
mτ2 g2 , puisque, avec cette approximation, V⃗ S=V⃗ ∞ . Par 

ailleurs Em(0)= 1
2
mV 0

2 .

Comme t S≫τ , t S=τ (1+
V 0sin A0

τ g ) donne que V 0sin A0≫τ g  : V 0
2>V 0

2 sin2 A0≫τ2 g2 , donc 

Em(0)≫Em(t S ) . 
La variation de l’énergie est négative, ce qui est normal, puisqu’elle est égale aux 
travaux des forces non conservatives, ici les frottements opposés au mouvement. 
C’est évidemment vrai tout le long de la trajectoire : l’énergie mécanique décroît à 
chaque instant.

3. Cas (d) : expression générale des frottements

a) Il faut absolument refaire un schéma où l’angle A est positif (cf cours de SII), ce qui 
n’est pas le cas sur la figure de l’énoncé. 

Attention, les 2 vecteurs de Frenet sont opposés aux 2 vecteurs de base de la base 
polaire : c’est clair pour u⃗r  ; u⃗θ indique le sens trigonométrique donc est 
effectivement opposé au sens de la trajectoire.
C’est bien sûr la deuxième loi de Newton, avec ma⃗= P⃗+ f⃗ .



En projetant les forces sur la base de Frenet ( N⃗ , T⃗ ) , on a de façon évidente f⃗=( 0
− f )  et 

P⃗=( P cos A

P cos(A+π
2 ))=( P cos A

−P sin A) .

En utilisant l’expression de l’accélération en coordonnées polaires en fonction de la 

vitesse qu’il n’est pas absurde de redémontrer rapidement a⃗=−V
2

R
u⃗r+

dV
dt

u⃗θ , la 

deuxième équation est évidente (égalité entre l’accélération à gauche et le membre à 
droite).
Ici le mouvement est dans le sens horaire, la valeur de la vitesse est donc négative : 

V=−V  soit dV
dt

u⃗θ=− dV
dt
u⃗θ=+ dV

dt
T⃗ , ce qui donne la première équation en étudiant 

correctement les signes.

Pour le deuxième terme dans la seconde équation, on a V
2

R
=V |ω|=−V ω=−V dA

dt
 car la 

vitesse angulaire est négative, et car θ=A+ π
2

.

b) En régime permanent pour la vitesse, celle-ci n’évolue plus, donc la RFD devient 
0⃗= P⃗+ f⃗  : les frottements compensent le poids, et sont donc de même norme.

On en déduit que r∞=1 .

La première équation devient 0=−gsin A∞−g×1 , soit sin A∞=−1  et A∞=− π
2

.

c) On obtient d (V cos A)
dA

=0 . Comme l’angle change à chaque instant, c’est que V cos A  est 

une constante du mouvement : c’est cohérent avec le cas sans frottements car 
V x=V cos A=V 0 cos A0 .

d) On a d (V cos A)
dA

=dV
dA

cos A−V sinA , puis en appliquant la règle de dérivation : 

dV
dA

=dV
dt

dt
dA

=(−gsin A−gr (V ))(− V
gcos A )=V sin A+V r (V )

cos A
, donc d (V cos A)

dA
=V r (V ) .
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