
Modèle de Thomson

1. L’énoncé impose les coordonnées cartésiennes, et on obtient très simplement : 

{ẍ+2α ẋ+ω0
2 x=−

e E0

m
cosωt

ÿ+2α ẏ+ω0
2 y=0

z̈+2α ż+ω0
2 z=0

2. En régime permanent ne restent plus que les SP des équadiffs obtenues : elles sont 
d’ordre 2, à coefficients constants positifs, donc les solutions générales homogènes 
tendent vers 0.

Il n’y a donc aucun mouvement sur y et sur z en RP, et la SP sur x doit être trouvée 
en passant dans les complexes, car c’est une sinusoïde de pulsation égale à celle de 
l’excitation, donc du champ électrique, soit ω.

3. On peut donc poser x (t)=X cos (ωt+φ) soit x (t)=X exp i(ωt+φ)=X exp i ωt

pour déterminer l’amplitude X=|X|=
e E0

m√(ω0
2−ω2)2+4α2ω2

.

L’accélération est la dérivée seconde de la position, donc par les complexes, on 

trouve que l’amplitude est multipliée par ω2 (le signe disparaît) : 

A=
e E0ω

2

m√(ω0
2−ω2)2+4α 2ω2

4. On garde le terme dominant au dénominateur : A=
e E0ω

2

mω0
2

5. La puissance rayonnée est donc proportionnelle à ω4 donc beaucoup plus 
importante (16 fois) pour le violet que pour le rouge : le violet de la lumière blanche 
est donc rayonné dans toutes les directions, le ciel semble bleu violet, et le soleil 
jaune orange (couleur complémentaire du bleu violet).

Mouvement palet

1. RFD sur x = cours : ω0=√ k 0

m
, K=

αF
m

, xéq=l0

2. Equadiff d’ordre avec second membre. Selon le signe du discriminant Δ de l’éq 
homogène, on a 3 possibilités : Δ>0 => régime apériodique, Δ=0 => régime 
critique, Δ<0 => régime pseudopériodique.

3. Δ=0 : K2−4ω0
2=0 , et comme tout est positif : K=2ω0 donc αF=2√k 0m

La SP est xP=xéq=l0 . La SGH est xH (t)=(A t+B)e−ω0 t car la racine double est 

− K
2

=−ω0 .



x (0)=B+l0=l0  : B=0 donc x (t)=A t e−ω0 t+ l0 et ẋ (t)=Ae−ω0 t−A ω0 t e
−ω0 t

donc A=−v0 et x (t)=l0−v0t e
−ω0 t

4. x min donc ẋ (t)=Ae−ω0 t−A ω0 t e
−ω0 t=0  : tMIN=

1
ω0

et en remplaçant : 

xMIN=l0−
v0

ω0 e
car e−1=1

e
. Allure : retour vers xéq=l0 qui est aussi la valeur 

initiale, sans oscillations ; tangente à l’origine négative (−v0) .

5. On remplace v (t )= ẋ (t)=v0 e
−ω0 t (ω0 t−1) donc 

v̇ (t )=−ω0 v0e
−ω0 t (ω0 t−1)+v0ω0 e

−ω0 t=v0ω0 e
−ω0 t(2−ω0 t)  : v est donc croissante 

jusqu’à tMAX=
2
ω0

et décroissante ensuite, pour tendre vers 0.

6. C’est bien à tMAX=
2
ω0

 : dès que la vitesse du patin décroît, le contact est perdu, 

car le patin ne peut que pousser le palet et ne le retient pas ; le palet continuera son 
mouvement de façon uniforme.

La vitesse vaut à ce moment : v (tMAX)=v0 e
−2(2−1)=v0 e

−2=
v0

e2

7. Avant le choc (pas de contact du palet avec le dispositif) : Em=Ec=
1
2
mv0

2

8. Après le choc (plus de contact) : E 'm=E' c=
1
2
mv0

2 e−4 . On peut définir le 

coefficient de restitution du choc comme le rapport des énergies mécaniques : 

r=e−4=1,83% , donc 98,17 % de l’énergie mécanique a disparu et a été 
transformée en énergie thermique par les frottements de l’amortisseur.

Ce dispositif est donc très efficace en tant que système de freinage.



Astronaute en mission

Sur le système {astronaute + fauteuil} de masse mT , le BDF contient la force de rappel 

élastique F⃗ =−k( L−L0) u⃗R→M et le poids P⃗=mT g⃗ où g⃗ est le champ de pesanteur 

local.

L’énoncé ne parle pas d’oscillations amorties : les frottements sont donc négligés.

En supposant le référentiel de la station galiléen, on a mT a⃗=F⃗ + P⃗

En projetant sur un axe z dans le sens opposé à g⃗ (verticale ascendante locale) dont 
l’origine est le point d’attache du ressort, on obtient alors (faire un schéma) L=z et 

u⃗R→M =+ e⃗z (MÉTHODO ressorts !!), ce qui conduit à l’ED : mT z̈=−k(z−L0)−mT g

donc mT ẍ+k x=k L0−mT g .

(On peut vérifier qu’ici zéq=Léq=L0−
mT g

k
<L0 , bonne méthodo, mais hors sujet.)

On obtient surtout la pulsation propre des oscillations ω0=√ k
mT

, expression valable 

quelle que soit la valeur de g…

Donc : sans l’astronaute ω0
2= k

m
, et avec ω1

2= k
m+M

. On fait une division inspirée des 

deux équations pour obtenir 1+ M
m

=(ω0

ω1
)

2

=(T 1

T 0
)

2

puisque pulsation et période sont 

inversement proportionnels.

On en tire M=m[( T 1

T 0
)

2

−1]=82,6 kg  : s’il est en caleçon, il doit limiter sa 

consommation des petits plats du chef étoilé Thierry Marx...

Réponse harmonique stabilisée

1. Définition A fixe, pas de frottements

BDF : P⃗ , T⃗ , F⃗1=−k (L1−l0)u⃗x , F⃗2=−k (L2−l0)(−u⃗x)

RFDx : m ẍ=−T sin θ−k (l+ x−l0)+k (l−x−l0)

RFDz : 0=+T cosθ−mg

Petits angles : cosθ≈1

On a x=l sinθ  : m ẍ+(2k+m g
l )x=0 , donc ω0=√2

k
m

+
g
l

2. Seule différence : L1=l+x− y  : m ẍ+(2k+m g
l )x=k y  donc ẍ+ω0

2 x=Ω2Y mcosωt

En régime établi, même pulsation pour x et y : x (t)=X mcos (ωt+φ) , et on passe dans C



x (t)=Xme
jωt , y (t)=Y me

jωt  : Xm=Y m
Ω2

ω0
2−ω2  donc Xm=Y m

Ω2

|ω0
2−ω2|  et 

φ=0  pour ω<ω0 , φ=π  pour ω>ω0 .

3. Terme d’amortissement : passe-bas résonnant.

4. Il faut redémontrer que 
Xm,max=Xm

Q

√1− 1
4Q2

 : avec Xm,max=1,1 Xm , on trouve 

Q=0,9 .

Deux ressorts

a) 

b) Réf : Terre, galiléenne

Système : {M;m}

Contrainte : mvt selon x => 
accélération selon x (le poids et 
réaction se compensent alors)

Bdf :

Poids P⃗ , réaction normale R⃗N (pas de frottements), forces de rappel élastiques 

F⃗ 1=−k(L−L0) u⃗1 et F⃗ 2=−k(L−L0) u⃗2 avec L=√a2+x2

RFD sur x : m ax=F 1x+F 2x , avec 
u1x

x
=

1
L

(Thalès par exemple, ou trigo avec le cosinus 

de l’angle)

D’où : m ax=−2 k (L−L0)
x
L

donc l’ED :  m ẍ+2 k x(1−
L0

√a2+ x2)=0

c) On raye les dérivées partielles pour trouver la ou les solutions constantes :

• x0=0 est toujours une solution

• les autres vérifient √a2+ x2=L0 soit x2=L0
2−a2 qui n’existent que si a< L0 et 

sont alors x1=+√L0
2−a2 et x2=−√ L0

2−a2 , symétrique.







Équation proies – prédateurs (de Volterra-Lotka)

{dxdt=x (α−β y)dy
dt

= y (δ x−γ )
 où (α , β , δ , γ )  sont 4 constantes positives.

a) Première affirmation : 
dy
dt

=−γ y , de solution générale y (t)=Y 0e
− γ t  : 

décroissance exponentielle.

Deuxième affirmation : 
dx
dt

=α x , de solution générale x (t)=X 0e
α t  : croissance 

exponentielle.

Troisième affirmation : (dxdt )préd

=−β ( y x)  (variation due aux prédateurs seuls).

Quatrième affirmation : idem 3ème pour les prédateurs.

b) Il faut se débarrasser de y : on ne peut l’exprimer qu’avec l’équation des proies : 

y=α
β
− 1
β x

dx
dt

.

Dans l’équation des prédateurs, on le remplace : 
dy
dt

= 1
β x2

dx
dt

− 1
β x

d2 x
dt 2  donc 

1
β x2

dx
dt

− 1
β x

d2 x
dt2

=(αβ− 1
β x

dx
dt )(δ x−γ ) .

On peut essayer de l’arranger un peu :
dx
dt

−x d
2 x
dt 2 =(α x2−x dx

dt )(δ x−γ )  soit 

x
d2 x
dt2

−[1+x (δ x−γ )] dx
dt

+α x2(δ x−γ )=0

c) Dérivées temporelles nulles : {0=x(α−β y )
0= y (δ x−γ )

 donc {xéq=
γ
δ

yéq=
α
β
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