

Écriture en base n

Codage de nombres

Chapitre ITC4

Représentation des nombres dans un ordinateur

Écriture en base n

nombres

Section 1

<u>Écriture en</u> base n

Principes généraux

Représentation des nombres dans un ordinateur

Écriture en base n

nombres

Codage

- On doit disposer de n symboles
 - $\overline{a_k a_{k-1} \dots a_2 a_1 a_0}^n = a_k . n^k + \dots + a_2 . n^2 + a_1 . n^1 + a_0$ $= \sum_{i=1}^k a_i . n^i$

Exemple en base 10

$$7231 = 7 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 1 \times 10^0$$

Notation binaire

Représentation des nombres dans un ordinateur

Écriture en base n

nombres

Caractéristiques

- Deux symboles : 0 et 1, correspondant à deux états possible d'une mémoire d'ordinateur
- Tables d'addition et de multiplication très simples
- Noté précédé d'un b en Python

Exemple

$$b100101 = 2^5 + 2^2 + 2^0 = 37$$

Valeurs importantes

$$2^8 = 256$$
 $2^{10} = 1024 \approx 10^3$ $2^{16} = 65536$ $2^{20} = 1048576 \approx 10^6$

Notation hexadécimale (pas à connaître)

Représentation des nombres dans un ordinateur

Écriture en base n

Codage de nombres

Caractéristiques

- 16 symboles : 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Correspondance simple avec 4 chiffres binaires

Noté précédé d'un x en Python

Exemple

$$xD4 = 13 * 16 + 4 = 212 (= b11010100)$$

Écriture e base n

Codage des nombres

Entier

Keels

Limites de l'exposa

Section 2

Codage des nombres

Entiers

- Écriture en base n
- Codage des nombres
 - Entiers
 - Réels
 - Limites de l'exposant
 - Limites de précision

Regroupement par octets

Représentation des nombres dans un ordinateur

Écriture de la base n

Codage do nombres

Entiers Rágle

Limites de l'exposan Limites de précision

Définition d'un octet

Une mémoire contient des éléments appelés *bits* pouvant prendre deux valeurs notées 0 et 1.

Les bits sont regroupés par 8 pour former un *octet* (en anglais : *byte*).

Attention! bit ou octet?

- Internet par ADSL : jusqu'à 20 Mbits/s...= 2,5 Mo/s
- USB-3 : jusqu'à 4,8 Gbits/s...= 600 Mo/s

Codage des entier positifs

Représentation des nombres dans un ordinateur

Écriture e base n

Codage de nombres

nombres Entiers

Réels Limites de l'exposa Limites de précision

Les types d'entiers positifs

Nombre d'octets	Nombre de bits	Valeur maximale
1	8	$2^8 = 256$
2	16	$2^{16} = 65536$
4	32	$2^{32} = 4.294.967.296$
8	64	$2^{64} \approx 1, 8.10^{19}$

Dépassement de capacité

• En typage statique, on risque un dépassement de capacité :

• En typage dynamique, par exemple en Python, on ne risque à peu près rien.

Codage des entier positifs

Représentation des nombres dans un ordinateur

Écriture e base n

Codage de nombres

nombres Entiers

Réels

Limites de l'exposan Limites de précision

Méthode de calcul du codage d'un entier

- on effectue une division entière du nombre par 2
- on effectue la division entière du quotient par 2, de façon récurrente, jusqu'à ce que le quotient obtenu vaille 0
- le nombre en binaire est obtenu en écrivant de gauche à droite les restes obtenus de bas en haut

Codage des entier positifs

Représentation des nombres dans un ordinateur

Entiers

Codage de 78

*
$$78 = 2 * 39 + (0)$$

*
$$39 = 2 * 19 + (1)$$

*
$$19 = 2 * 9 + (1)$$

*
$$9 = 2 * 4 + (1)$$

*
$$4 = 2 * 2 + \langle \bar{0} \rangle$$

*
$$2 = 2 * 1 + (0)$$

*
$$1 = 2 * 0 + \langle \hat{1} \rangle$$

On écrit les restes de bas en haut : 78 = b1001110. Si on code sur un octet, on ajoute des zéros devant : b01001110.

Codage des entiers relatifs

Représentation des nombres dans un ordinateur

Entiers

Principe du codage

- Le bit le plus fort indique le signe : $0 \Leftrightarrow +$ et $1 \Leftrightarrow -$
- Pour les nombres positifs, on code normalement
- Pour les nombres négatifs, on code la valeur absolue, on applique une opération NOT à tous les bits, et on ajoute 1

Quelques types d'entiers négatifs

Octets	Bits utiles	Plage de valeurs
1	7	[-128127]
2	15	[-3276832767]
4	31	[-21474836482147483647]

Exemple de Codage/décodage d'un entier négatif

Représentation des nombres dans un ordinateur

Entiers

Codage de -78 sur 8 bits :

- on montre d'abord que 78=b01001110
- on code -78 comme NOT(b01001110)+1=b10110001+1=b10110010

Décodage de b10011010

C'est un entier négatif. Pour trouver sa valeur absolue, on refait la même opération : NOT puis +1

- opérateur NOT : b01100101
- ajout de 1 : b01100110
- calcul de $2^6 + 2^5 + 2^2 + 2^1 = 102$
- le nombre codé est donc 102

Réels

Écriture en base n

- Codage des nombres
 - Entiers
 - Réels
 - Limites de l'exposant
 - Limites de précision

Représentation des réels

Représentation des nombres dans un ordinateur

Notation scientifique en base 10

- On écrit un réel sous la forme 4, 213.108
- Si on fixe le nombre maximal de chiffres significatifs, tout réel peut s'écrire comme un entier relatif multiplié par une puissance entière de 10; par exemple $4,213.10^8 = 4213.10^5$

Représentation des réels

Représentation des nombres dans un ordinateur

Écriture e base n

Codage de nombres Entiers Réels

Limites de l'exposar Limites de précision

Notation scientifique en base 10

- On écrit un réel sous la forme 4,213.108
- Si on fixe le nombre maximal de chiffres significatifs, tout réel peut s'écrire comme un **entier** relatif multiplié par une puissance **entière** de 10; par exemple $4,213.10^8 = 4213.10^5$

Notation «scientifique» en base 2

- Si on fixe le nombre maximal de chiffres significatifs, tout réel peut s'écrire comme un **entier** relatif multiplié par une puissance **entière** de $2: x = \text{mantisse} \times 2^{exposant}$
- La taille de la mantisse m (-1bit de signe) indique le nombre de chiffres significatifs selon la règle approximative
 10 bits ⇔ 10 chiffres en base 2 ⇔ 3 chiffres en base 10
- La taille de l'**exposant** *e* indique les puissances maximales et minimales représentables.

Codage des réels selon la norme IEEE 754

Représentation des nombres dans un ordinateur

Écriture e base n

Codage de nombres

Réels

Limites de l'exposar Limites de précision

La norme IEEE 754 utilise une technique un peu différente

Chaque réel est codé avec :

- un bit de signe s
- un exposant non signé *e*
- une mantisse non signée *m*

Sa valeur vaut alors $(-1)^s \times (1 + \frac{m}{2^n}) \times 2^n = 2^n = 2^n$ où d est un décalage donné par la norme et n le nombre de bits de m.

La norme IEEE 754 définit des réels particuliers :

- 0
- $+\infty$ (en Python, float("inf"))
- $-\infty$ (en Python, float("-inf"))
- Not a Number (en Python, float("nan")) pour les résultats indéfinis comme 0/0, $\sqrt{-2}$ ou encore $0 \times \infty$

Codage des réels selon la norme IEEE 754

Représentation des nombres dans un ordinateur

Écriture e base n

Codage de nombres

nombres Entiers

Réels

Limites de l'exposa Limites de précision

Python utilise par exemple des réels codés sur 64 bits

- 1 bit de signe
- 11 bits d'exposant
- 52 bits de mantisse
- un décalage de 1023

Ainsi le nombre (s=1,m=2746133873243244,e=1036) représente
$$(-1)^1 \times \left(1+\frac{2746133873243244}{2^52}\right) \times 2^{1036-1023} = -13187,188416148$$

Limites de l'exposant

Écriture en base n

- Codage des nombres
 - Entiers
 - Réels
 - Limites de l'exposant
 - Limites de précision

Danger avec les fractions de grands/petits nombres

Représentation des nombres dans un ordinateur

Écriture base n

Codage de nombres

Entie

Limites de l'exposant Limites de précision

Notebook

Dans le calcul d'une fraction $\frac{a}{b}$, il est possible que le résultat soit dans les bornes autorisées, mais que le numérateur ou le dénominateur soit trop petits.

Solution : si on travaille sur des grandeurs énormes ou toutes petites, on prend des unités plus adaptées :

- pour la physique atomique : le nanomètre, l'unité de masse atomique, l'électron-Volt,...
- pour l'astronomie : l'unité astronomique ou l'année lumière, l'année, la masse solaire,...

Écriture e base n

Codage de

Entiers

Réels

Limites de l'exposan Limites de précision

- 1 Écriture en base n
- 2 Codage des nombres
 - Entiers
 - Réels
 - Limites de l'exposant
 - Limites de précision

Danger des erreurs à croissance exponentielle

Représentation des nombres dans un ordinateur

Limites de précision

Notebook Erreur à croissance exponentielle

Si à chaque étape d'un calcul, l'erreur est multipliée par $\alpha > 1$, alors la suite des erreurs est une suite géométrique explosive.

Qui est en cause?

- Parfois c'est l'algorithme qui est mal conçu
- Parfois c'est une propriété fondamentale du système (système chaotique)

Danger des nombres très proches

Représentation des nombres dans un ordinateur

Limites de précision

Limite de précision

Le plus petit nombre en Python tel que $1+\varepsilon\neq 1$ vaut $\varepsilon = 2, 2.10^{-16}$

Notebook

Le calcul de la différence de deux nombres très proches est peu précis : $1 + 10^{-18} - 1 = 0$ pour Python!.

Problème de comparaison à zéro

Représentation des nombres dans un ordinateur

Écriture e base n

Codage do nombres

nombres Entiers

Réels

Limites de l'exposan Limites de précision

Notebook

Une erreur d'arrondi peut transformer un 0 en une valeur faible mais non nulle, entrainant :

- des boucles conditionnelles qui ne se terminent jamais
- des valeurs complexes dans un problème à valeurs réelles

Écriture e base n

Codage de nombres

À connaître

Représentation des nombres

Représentation des nombres dans un ordinateur

Écriture e base n

Codage do

À connaître

- Le codage/décodage des entiers positifs
- Le codage/décodage des entiers relatifs
- Le principe général de stockage des entiers et des réels (mantisse + exposant)
- Le décodage d'un réel
- Le problème de la comparaison d'un réel à 0