Les fonctions

Chapitre ITC1

Les fonctions

Les fonctions

Introduction :
de quoi est

constitué un
programme ? .
Section 1

Introduction : de quoi est constitué un

programme ?

Instructions et expressions

Les fonctions

Introduction :
de quoi est

constitué un @ ce sont des briques de base du programme

programme ?

@ elles exécutent une action mais ne renvoient aucune valeur

@ exemples : = (affectation), import, if, for, while, def,..
V.

Les expressions

@ ce sont des ensembles de commandes qui renvoient une
valeur

o elles utilisent les variables et des opérateurs : +, -, ...

@ exemples : 1+2, a+3, a/b+(c-d)*2,..

.

Instructions et expressions

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

Instructions et expressions

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

instructions

Instructions et expressions

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

instructions

expressions

—N Fonctions et procédures

FAURIEL

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

On veut parfois regrouper des instructions ou des expressions...

... on crée alors des :
e fonctions : ensemble d’instructions/expressions qui
renvoient une valeur
@ procédures : ensemble d'instructions/expressions qui
exécutent une action sans renvoyer de valeur
En Python, il y en a déja de toutes prétes :
@ print est une procédure qui affiche a I'écran

@ input est une fonction qui renvoie une valeur
v

On repere les fonctions et les procédures par les parenthéses [

qui suivent leur nom.

W=y Fonctions et procédures
FAURIEL]

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

a=input ("Entrez un message: ")
b=4
for i in range(b):

print(a)

Fonctions et procédures

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

a=i instructions
b
fo in range(b):

print(a)

Fonctions et procédures

Les fonctions

Introduction :
de quoi est
constitué un
programme ?

n)

un message:

ange{b)

fonctions
procédures

Les fonctions

Définition Section 2

d’une fonction

Définition d'une fonction

Qu'est-ce qu'une fonction ?

Les fonctions

C'est une «boite noiren qui prend des arguments (ou

parametres) en renvoie une ou des valeurs

Définition
d’une fonction

arguments/paramétres valeur(s) renvoyée(s)
%

»

> fonction >

Le prototype d'une fonction

Les fonctions

Le prototype (ou signature) d'une fonction est sa notice

d'utilisation

On y indique :
Définition

d’une fonction @ son nom et ce qu'e”e fa|t

@ les arguments qu'elle prend en entrée, avec leurs types et
leurs contraintes

@ la/les valeur(s) de retour (sortie) avec son type

moyenne (x:float, y:float)->float : calcule [a moyenne
arithmétique de deux réels.

La déclaration d'une fonction

Les fonctions La définition d'une fonction de fait avec le mot-clé [l

prototype

def fonction(arguments):
""" commentaire éventuel """
instructions
return valeur

Définition
d’une fonction

moyenne(x:float, y:float)->float: calcule la moyenne arithmétique de
def moyenne(x,y):
m=(x+y) /2

return m

On peut indiquer aussi le type des arguments attendus dans la

définition, mais cela n'a aucun caractére obligatoire :

def moyenne(x: float,y: float) -> float:
""" calcule la moyenne arithmétique de deux réels """

L'appel d'une fonction

Les fonctions

Une fonction s'exécute quand on I'appelle

L'appel de la fonction se fait en écrivant son nom suivi de ses
arguments entre parenthese : moyenne (2,4)

Définition
d’une fonction

On peut mettre des variables comme argument ; le nom des

variables n'a rien a voir avec celui des parametres

Par exemple :

def moyenne(x:float,y:float)->float:
m=(x+y) /2
return m

x=3

print (moyenne(1,x))

fonctionne : la fonction recevra un argument x qui vaudra 1 et
un argument y qui vaudra 3.

a——.N Fonctionnement de I'appel d'une fonction

FAURIEL

Les fonctions

Définition
d’une fonction

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:
m=(x+y) /2
return m

n=3

print (moyenne (1,n))

mémoire globale

Au départ, il n'y a rien en mémoire. Le programme commence a la
ligne 1

f i\

FAURIEL

Les fonctions

Définition
d’une fonction

Fonctionnement de I'appel d'une fonction

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:
m=(x+y) /2
return m

n=3

print (moyenne (1,n))

mémoire globale

moyenne

func

Le programme lit la ligne 1 : il y voit une définition de fonction, qu'il
stocke en mémoire pour plus tard.

f i\

FAURIEL

Les fonctions

Définition
d’une fonction

Fonctionnement de I'appel d'une fonction

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:
m=(x+y) /2
return m

n=3

print (moyenne (1,n))

mémoire globale

moyenne | func
n 3

Il saute a la ligne 4; il y lit une affectation et crée une case mémoire
de nom n et de valeur 3.

a——.N Fonctionnement de I'appel d'une fonction

FAURIEL

Les fonctions

Définition
d’une fonction

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:

mémoire globale mémoire de la fonction|
moyenne | func X 1
n 3 y 3

Ligne 5 : appels imbriqués. On commence par |'appel le plus intérieur,
comme en maths. Le programme se prépare donc a exécuter la
fonction, et crée un espace mémoire réservé a la fonction dans lequel
il stocke les valeurs données aux arguments, a savoir 1 et 3.

g i\

FAURIEL

Les fonctions

Définition
d’une fonction

Fonctionnement de I'appel d'une fonction

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:
m=(x+y) /2
return m

n=3

print (moyenne (1,n))

mémoire globale mémoire de la fonction|
moyenne | func X 1
n 3 y 3
m 2.0

Ligne 2, le programme calcule (x+y)/2 et affecte le résultat dans une
case mémoire m.

g i\

FAURIEL

Les fonctions

Définition
d’une fonction

Fonctionnement de I'appel d'une fonction

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:
m=(x+y) /2

n=3
print (moyenne (1,n))

mémoire globale mémoire de la fonction|
moyenne | func X 1
n 3 y 3
m 2.0

Ligne 3, le programme renvoie la valeur contenue dans m; la
mémoire locale de la fonction est effacée.

| TTTT

a——.N Fonctionnement de I'appel d'une fonction
FAURIEL

Les fonctions

Les variables créées dans une fonction sont stockées dans un

espace a part (cf. section 4)

Exécutons ligne par ligne le code suivant :

def moyenne(x:float,y:float)->float:
m=(x+y) /2

Définition t

d'une fonction return m

n=3

print (meyeg&l—,n—))

mémoire globale

moyenne | func
n 3

Le programme reprend a la ligne 5, I'appel a la fonction est remplacé
par le résultat renvoyé, et le programme affiche 2.0.

Récupération de(s) valeurs(s) renvoyée(s)

Les fonctions

La valeur renvoyée doit étre affectée a une variable si on veut la
stocker :

m=moyenne (1,2)
rint (m)

Définition P

d’une fonction

Si la fonction renvoie une liste de valeurs, on peut les stocker

dans une liste de variables :

encadre(x:float)->[float]: encadre le réel x entre deux entiers con
def encadre(x:float)->[float]:

import math

n=math.floor(x)

return [n,n+1]
i,j=encadre(1.5)
print(i) # affiche 1

Les procédures

Les fonctions

Définition
d’une fonction

Une procédure est une fonction qui ne renvoie rien

mais qui accomplit une action, par exemple un affichage.

affiche_entiers(n:int): affiche les entiers de 1 a n
def affiche_entiers(n:int):
for i in range(i,n+1):
print (i)

Les fonctions

Section 3

Vérification
des arguments

Vérification des arguments

Les mauvais arguments, source d'erreur

Les fonctions

En Python, le type des arguments n'est pas précisé

C'est un des problémes de Python : on peut passer n'importe
. quoi comme argument, et tenter, par exemple, de faire la

Vérification " R

CEREEEN moyenne entre un tableau et une chaine de caractéres.

Pour éviter cela, on place au début des fonctions des
assertions qui testent les arguments et, s'ils ne correspondent
pas a ce qu’'on attend, provoquent un message d’erreur.

=" L'instruction assert

Les fonctions

Vérification
des arguments

C’est une instruction, pas une fonction : JAMAIS de
parentheses

assert condition, message d'erreur

Exemples d’assertion sur un paramétre x :

assert x>0 , "l'argument doit &tre strictement positif"
assert x!=0 , "l'argument doit &tre non nul"

assert isinstance(x,int) , "l'argument doit &tre entier"
assert isinstance(x, (int,float)) , "l'argument doit étre réel"
etc...

Les fonctions

Section 4

Variables locales et globales

\ERELIS
locales et
globales

Variables globales et locales

Les fonctions
Une variable définie en-dehors d'une fonction est globale

Elle est alors utilisable dans tout le programme

Une variable définie dans d'une fonction est locale
Elle n'est alors utilisable que dans la fonction : une fois la
fonction terminée, elle est effacée de la mémoire. |

Variables
locales et
globales Exemple d'erreur classique

def plus_un(x:float)->float:
y=x+1
return y
plus_un(3)
print(y) # erreur, y n'existe plus

O W N =

Les fonctions

\ERELIS
locales et
globales

Variables globales et locales

Une variable définie en-dehors d'une fonction est globale

Elle est alors utilisable dans tout le programme

Une variable définie dans d’une fonction est locale

Elle n'est alors utilisable que dans la fonction : une fois la
fonction terminée, elle est effacée de la mémoire.

Pour récupérer une valeur d'une fonction, il faut la renvoyer et

la stocker dans une autre variable

Ol W N =

def plus_un(x:float)->float:
y=x+1
return y

z=plus_un(3)

print(z) # ok

Variables locales

Les fonctions

Les variables locales sont de deux origines :

@ les arguments sont définis comme des variables locales

@ toutes les variables définies dans la fonction

\ERELIS
locales et
globales

Dans cette fonction, on a x, y et m :

def moyenne(x:float,y:float)->float:
m=(x+y) /2

return m

Les fonctions

\ERELIS
locales et
globales

Variables globales dans une fonction

Dans une fonction, toute variable globale est utilisable :

g=9.8 # accélération de la pesanteur
def poids(m:float)->float:

return mxg
print (poids(1.4)) # affiche 13.72

Mais si une variable locale a le méme nom qu’une variable
globale, la variable globale est masquée :

g=9.8 # accélération de la pesanteur
def poids(m:float)->float:
g=9.83 # on est au pdle nord
return mxg
print(poids(1.4)) # affiche 13.762
print(g) # affiche 9.8

Variables globales dans une fonction

Les fonctions

Pour étre modifiée dans une fonction, une variable globale doit
étre déclarée avec le mot-clé (SN :

g=9.8 # accélération de la pesanteur
def poids(m:float)->float:

) global g
I\(/;:fezli g=9.83 # on est au péle nord
globales return mxg
print(poids(1.4)) # affiche 13.762
print(g) # affiche 9.83

Variables globales=danger

Les fonctions

Il faut éviter d’utiliser une variable globale dans une fonction

@ sauf pour les valeurs constantes (par exemple
G = 6.67e — 11 dans un pb de physique, ou les autres
données du probleme)

\ERELIS
locales et

globales @ si on a besoin vraiment de |'utiliser, c'est mieux de la
passer comme argument, méme si c'est plus lourd

Les fonctions

Section 5

Effets de bord

Effets de bord

Variables mutables et non mutables

Les fonctions

Variable mutable/non mutable

L'instruction x=... crée une case en mémoire appelée x et
contenant une valeur.

Que se passe-t-il si on modifie la valeur de x avec une nouvelle
instruction x=. .. ? En Python,

@ si la variable est de type mutable, la case mémoire est
modifiée : c'est le cas des listes et des dictionnaires

Effets de bord @ sinon, la variable est non-mutable : une nouvelle case
mémoire est créée avec la nouvelle valeur; c'est le cas des
entiers, des réels, des chaines de caracteéres, des booléens,
des tuples (listes non-mutables)

Variables mutables et non mutables

Les fonctions

Copie de variables

Quand on copie une variable dans une autre avec une
instruction du type x=y, alors, en Python,

@ si la variable y est de type non-mutable, alors une nouvelle
case mémoire x est créée avec la valeur de y

@ si la variable y est de type mutable, alors y et x
correspondent a la méme case mémoire

Effets de bord

x=3

y=x
y=y+1
print (x,y)

Ce programme affiche 3 et 4 J

Variables mutables et non mutables

Les fonctions

Copie de variables

Quand on copie une variable dans une autre avec une
instruction du type x=y, alors, en Python,

@ si la variable y est de type non-mutable, alors une nouvelle
case mémoire x est créée avec la valeur de y

@ si la variable y est de type mutable, alors y et x
correspondent a la méme case mémoire

Effets de bord

x="Bonjour"

y=x

y=y+" tout le monde"
print (x,y)

Ce programme affiche Bonjour et Bonjour tout le monde J

Variables mutables et non mutables

Les fonctions

Copie de variables

Quand on copie une variable dans une autre avec une
instruction du type x=y, alors, en Python,

@ si la variable y est de type non-mutable, alors une nouvelle
case mémoire x est créée avec la valeur de y

@ si la variable y est de type mutable, alors y et x
correspondent a la méme case mémoire

Effets de bord

x=[1,2,3]

y=x
y[0]=4
print(x,y)

Ce programme affiche [4,2,3] et [4,2,3] J

Variables mutables et non mutables

Les fonctions

Copie de variables

Quand on copie une variable dans une autre avec une
instruction du type x=y, alors, en Python,

@ si la variable y est de type non-mutable, alors une nouvelle
case mémoire x est créée avec la valeur de y

@ si la variable y est de type mutable, alors y et x
correspondent a la méme case mémoire

Effets de bord

Exemple 4

x=[1,2,3]
y=x.copy ()
y[0]=4
print(x,y)

Ce programme affiche [1,2,3] et [4,2,3] J

Variables mutables et non mutables

Les fonctions

Copie de variables

Quand on copie une variable dans une autre avec une
instruction du type x=y, alors, en Python,

@ si la variable y est de type non-mutable, alors une nouvelle
case mémoire x est créée avec la valeur de y

@ si la variable y est de type mutable, alors y et x
correspondent a la méme case mémoire

Effets de bord

x=[1,2,3]
y=x+[6,7]
y[0]=4
print(x,y)

Ce programme affiche [1,2,3] et [4,2,3,6,7] J

Les fonctions

Cela signifie que la fonction recoit comme argument une copie
de la variable initiale : elle ignore la case mémoire d'ol provient

cette valeur, donc elle ne peut pas la modifier :

def incremente(y:float)->float:
""" renvoie 1l'argument augmenté de 1 """
y=y+1
return y

x=3

print (incremente(x)) # affiche 4

print(x) # affiche 3

La fonction recoit un 3 mais ignore qu'il provient de x. Elle le
stocke dans une variable locale y, lui ajoute 1 et la renvoie; la
variable y est alors détruite.

v

Effets de bord

Passage d'arguments par référence

Les fonctions

En Python, les objets mutables comme les listes sont passés
par référence
Cela signifie que la fonction recoit I'adresse en mémoire des
données; si elle modifie ces données, cela modifie la variable
d’origine :
def fonction_inutile(liste:[float])->[float]:

""" ajoute 1 au premier terme de la liste et renvoie ce terme

liste[0]=liste[0]+1
return liste[0]

Effets de bord L=[1,3,4,2,5]
print(fonction_inutile(L)) # affiche 2
print(L) # affiche [2,3,4,2,5]

La liste de départ a été modifiée : on dit qu'il y a eu un effet
de bord.)

Les fonctions

Effets de bord

NHFOOWO~NOOOTS WN -

| 'effet de bord peut étre voulu ou pas

Il faut le préciser dans la documentation

def valeur_absolue(L:[float])->[float]:
""" renvoie la liste des valeurs absolues des termes de la liste
L2=[]
for i in range(len(L)):
if L[i]<0:
L2.append(-L[il])
else:
L2.append(L[i])
return L2
liste=[1,2,4,3,-2,-7]
print(valeur_absolue(liste)) # pas d'effet de bord
print(liste) # affiche [1,2,4,3,-2,-7]

ni

| 'effet de bord peut étre voulu ou pas

Les fonctions

Il faut le préciser dans la documentation

def valeur_absolue(L:[float])->[float]:

""" remplace chaque terme de la liste par sa valeur absolue """

for i in range(len(L)):

if L[il<0:
L[i]=-L[i]

return L
liste=[1,2,4,3,-2,-7]
print(valeur_absolue(liste)) # effet de bord
print(liste) # affiche [1,2,4,3,2,7]

Effets de bord

©O~NOOTH WN -

| 'effet de bord peut étre voulu ou pas

Les fonctions

Il faut le préciser dans la documentation

def valeur_absolue(L: [float])->[float]:
""" renvoie la liste des valeurs absolues des termes de la liste ini
L2=L.copy() # crée une copie de la liste de départ
for i in range(len(L2)):
if L2[1]<0:
L2[i]=-L2[i]
return L2
liste=[1,2,4,3,-2,-7]
print(valeur_absolue(liste)) # pas d'effet de bord
print(liste) # affiche [1,2,4,3,-2,-7]

Effets de bord

QOO ~NOOHSHWN -

Les fonctions

Section 6

Les tests de fonctions

Les fonctions

Un jeu de tests sert a vérifier qu'une fonction fait bien ce qu’'on
lui demande

@ on vérifie que la fonction renvoie la bonne valeurs pour
certains arguments choisis

@ les arguments choisis doivent tester le plus possible les cas
particuliers

@ si un seul test échoue, la fonction est mauvaise

o |'idéal est d'écrire le test AVANT d'écrire la fonction

Exemple :
carre(x:float)->float: renvoie le carré de x
def teste_carre():

if carre(2.0)!=4.0:

return False

return True
def carre(x:float)->float:

& écrire ...

Les fonctions

NHFOWOWWO~NOOTWNRH

Jeu de tests complet

S'il y a des conditions dans la fonction, il faut les tester

valeur_absolue(x:float)->float: renvoie la valeur absolue de x
def teste_valeur_absolue():
if valeur_absolue(2.0)!=2.0:
return False
if valeur_absolue(-2.0)!=2.0:
return False
return True
def valeur_absolue(x:float)->float:
if x<0:
return -x
else:
return x

Jeu de tests complets

Les fonctions

Parfois, il faut imaginer ol on pourrait faire des erreurs

Avec I'expérience..Par exemple, pour une fonction cherchant le
minimum d'une liste, les erreurs classiques sont :

@ de ne pas parcourir la liste jusqu'au bout

o d'initialiser le minimum a 0

minimum(L: [float])->float: renvoie le minimum de la liste
def teste_minimum():
if minimum([1,-3,2])!=-3: # liste quelconque
return False
if minimum([1,2,4,3])!=1: # valeurs toutes positives
return False
if minimum([1,4,5,0])!=0: # minimum & la fin
return False
return True

OO ~NOOOTHS WN -

	Introduction: de quoi est constitué un programme?
	Définition d'une fonction
	Vérification des arguments
	Variables locales et globales
	Effets de bord
	Tests

