Régression linéaire avec la calculatrice TI-Nspire

Utilisons la calculatrice TI-Nspire pour vérifier par régression linéaire la loi d'Arrhénius et déterminer la valeur de l'énergie d'activation d'une réaction dont on donne la valeur de la constante de vitesse à différentes températures θ .

La forme linéarisée de la loi d'Arrhénius k = A.exp $\frac{-E_A}{R.T}$ est ln(k) = ln(A) - $\frac{E_A}{R.T}$. Le tableau de valeur utilisé est le suivant :

θ / °C	k / s ⁻¹
20	0,122
25	0,172
30	0,240
35	0,331

Première étape : Entrée des valeurs de θ / $^{\circ}C$ et de k / s^{-1}

Ouvrons l'application "Tableur & Listes" :

Commençons par entrer les valeurs du tableau dans deux colonnes qu'on nommera t et k.

4	1.1	*No	on enregistré	\bigtriangledown	<1 ×
- 1	A t	В	C	D	
٠					
1	20				
2	25				
3	30				
4	35				
5					
4	A4 35	k	1		•

1	1.1	Þ	*No	n enreg	istré 🗢	(1) ×
- 1	A t		[∎] k	C	D	
+						
1		20	0.122			
2		25	0.172			
3		30	0.24			
4		35	0.331			
5						
	B4	0.331		k		•

Au lieu de calculer $\frac{1}{T}$ et ln(k) pour chaque ligne du tableau, on va faire les calculs pour toutes les lignes en même temps.

La 3^{eme} colonne va contenir toutes les valeurs de $\frac{1}{T}$.

Déplacer le curseur sur l'entête de la 3^{ème} colonne et la nommer x.

Dans la case au-dessous, taper "=1/(t+273)" puis taper [ENTER].

1	1.1	*Nor	n enregistré 🕤	\checkmark	- (<mark>1</mark> 🔀
	A t	Bk	C _x	D	
+			1 /(t +273)]	
1	20	0.122			
2	25	0.172			
3	30	0.24			
4	35	0.331			
5					
<	x = 1/(t+2)	273)			•

Un conflit est détecté. Sélectionner "Référence de variable".

De même, la 4^{em} colonne va contenir toutes les valeurs de ln(k). Déplacer le curseur sur l'entête de la 4^{em} colonne et la nommer y.

Dans la case au-dessous, taper "=ln(k)" puis taper [ENTER]. Un conflit est à nouveau détecté. k représente la variable. Sélectionner "Référence de variable".

◀ 1.1 ▶	*Non enregistré 🗢 🛛 🚺 🔀
At	B _k C _x D _y
*	Conflit détecté
1	= =ln(k). k : Colonne ou ∨ariable ?
3	Référence de variable
4	OK Anryler
D y :=ln	(k) •

At	В	k	⊆ _× ∣	₽y
•			=1/('t+273)	=ln('k)
1	20	0.122	1/293	-2.10373
2	25	0.172	1/298	-1.76026
3	30	0.24	1/303	-1.42712
4	35	0.331	▶ 1/308	-1.10564
5				
D1 =	-2.1037	3423424	89	•

$\theta / ^{\circ}C$	k / s ⁻¹	$\frac{1}{T}$ / K ⁻¹	ln(k)
t	k	Х	у
20	0,122	0,003413	-2,104
25	0,172	0,003356	-1,760
30	0,240	0,003300	-1,427
35	0,331	0,003247	-1,106

Les colonnes 1 à 4 correspondent au tableau ci-dessous :

Troisième étape : Régression linéaire

Faisons maintenant la régression linéaire ; la variable x correspond aux différentes valeurs de $\frac{1}{T}$ (donc de la 3^{ème} colonne) ; la variable y correspond aux différentes valeurs de ln(k) (donc de la 4^{ème} colonne).

Taper sur [MENU] puis sélectionner [4: STATISTIQUES] puis [1: Calcul statistique...] puis [4: Ajustement linéaire (a+bx)...].

1: 1: 1:3,5 3: 1:3,5 3: 1:3,5 3: 1:3,5 3: 1:3,5 3: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	Actions Insertior Donnée Statistiq	n s jues				1,3,5	1: Actions 2: Insertion 3: Données 4: Statistiqu	ues 1: Calcul	statistiqu	+ + +	4		 1: Actions 1: Statistiques à une variable 2: Statistiques à deux variables 3: Ajustement linéaire (mx+b) 			4	
5	Table de	es valeurs de	e la fonctio	on ∙⊻	-		5: Table de	s v2: Distrib	utions	onfiond		*	4: Ajustement lineaire (a+bx) 5: Droite Med-Med	•	- Com		Þ
() 6:	Astuces	3		0373			6: Astuces	4: Tests	statistiqu	es	.е.,	. P F	6: Régression de degré 2		nnano s	ce	4 4
2	25	0.172	1/298	-1.76026		2	25	0.172	1/298	-1.76	026	5	7: Régression de degré 3		-1.76	026	Π
3	30	0.24	1/303	-1.42712		3	30	0.24	1/303	-1.42	712	2	9: Régression puissance		-1.42	2712	
4	35	0.331	1/308	-1.10564		4	35	0.331	1/308	-1.10	564	1	B: Régression exponentielle		-1.10)564	
5						5							C:Régression sinusoïdale				
D1	=-2.103	37342342489	9	•		D	1 =-2.1037	7342342489			•	•				•	

OK Annuler

Sélectionner alors "'x " pour la liste des x et "'y" pour la liste des y.

égression linéaire (a+1)x)	Régression linéaire (a+b	x)
Liste des X : Liste des Y : Enregistrer RegEqn dar iste des fréquences :	k t y J	Liste des X : Liste des Y : Enregistrer RegEqn da Liste des fréquences :	'х М 'К ' Т 'Х У
Liste des catégories :	OK Ann	Liste des catégories : [

Laisser "1" à la liste des fréquences.

4	1.1	•	*Nor	i enregistré	∽ 🐴 🛛
	Cx		₽ _y	E	E A
٠	=1/	('t+273)	=ln('k)		=LinRegB>
2		1/298	-1.76026	RegEqn	a+b*x
3	•	1/303	-1.42712	а	18.3942
4		1/308	-1.10564	b	-6005.95
5				r²	1.
6			1	r	-1.
1	71	="Régr	ession linéa	ire (a+bx)	"

Les résultats de la régression linéaire s'affichent. La valeur du coefficient de corrélation ($|r| \approx 1$) montre que les points sont alignés et donc que la loi d'Arrhénius est vérifiée.

La valeur de a = -6006 = $\frac{-E_A}{R}$ permet de calculer E_A = -a.R = 49,9 kJ.mol⁻¹.

La valeur de b = 18,39 = ln(A) permet de calculer la valeur du facteur préexponentionnel : $A = 9,74.10^7 \text{ s}^{-1}$.

<u>Quatrième étape : Tracé</u>

Si on souhaite tracer ensuite la droite correspondante, insérons une page "Données & statistiques".

Taper sur [MENU] puis sur [4: Insertion] puis sur [7: Données & statistiques].

Déplacer ensuite le curseur sur l'axe des abscisses et à l'apparition du message, cliquer et appuyer sur [ENTREE] pour sélectionner la variable "x".

4	1.1 1.2	*Non enregistré 🗢	1
able	Titre : k		
une vari			0.122
ajouter (0.331	
ar pour a	(0.200.172	
Clique			_
(Cliquer ou appu	iyer sur Entrise pour ajouter u	ne variable

De même, déplacer ensuite le curseur sur l'axe des ordonnées et à l'apparition du message, cliquer et appuyer sur [ENTREE] pour sélectionner la variable "y".

Le nuage de points est alors représenté.

Pour afficher la droite de régression, taper sur [MENU] puis sur [4: Analyser] puis sur [6: Régression] puis sur [2: Afficher droite (a+bx)].

La droite de régression s'affiche.

Ici, tous les points sont sur la droite ; il n'y a donc aucun point aberrant.

