Régression linéaire avec la calculatrice GRAPH 35+

Utilisons la calculatrice GRAPH 35+ pour vérifier par régression linéaire la loi d'Arrhénius et déterminer la valeur de l'énergie d'activation d'une réaction dont on donne la valeur de la constante de vitesse à différentes températures θ .

La forme linéarisée de la loi d'Arrhénius k = A.exp $\frac{-E_A}{R.T}$ est ln(k) = ln(A) - $\frac{E_A}{R.T}$. Le tableau de valeur utilisé est le suivant :

θ / °C	k / s ⁻¹
20	0,122
25	0,172
30	0,240
35	0,331

Première étape : Entrée des valeurs de θ / **•***C* **et de** k / s^{-1}

Commençons par entrer les valeurs du tableau dans deux colonnes List 1 et List 2. Dans le menu principal, sélectionner LIST.

Une fenêtre s'ouvre avec le contenu des différentes listes. En déplaçant avec le curseur, entrer les valeurs dans les listes List 1 et List 2.

Deuxième étape : Calcul automatique des valeurs de 1/T avec T en K et ln(k)

Au lieu de calculer $\frac{1}{T}$ et ln(k) pour chaque ligne du tableau, on va faire les calculs pour toutes les lignes en même temps.

La liste List 3 va contenir toutes les valeurs de $\frac{1}{T}$. Déplacer le curseur sur l'entête de la liste List 3 :

List 2	List B	List 4		
0.122	-			
0, 112	R.R.M.			
0.331				
	1			
SRTA SRTD DEL DEL THS				
	List 2 0.122 0.172 0.24 0.331	List 2 List 2 0.122 0.172 0.24 0.331		

Taper ensuite la formule $(L_1 + 273)^{-1}$. Pour taper List 1, taper [OPTN] puis [LIST] puis [List] et enfin 1.

1	List I	List 2	List a	List H
1	20	251.0		
5	25	0.172		-
Э	30	0.24		8.000
4	35	0.331		
2	73+Li	st 1	-1	
Lis	tlL→M	Dim F	ill Se	A P

En tapant [ENTER], la liste List 3 se remplit avec les valeurs de $\frac{1}{T}$.

. 1	List I	List 2	List a	List 4
1	20	551.0	3. 4E-3	
5	25	0.172	3.36-3	
E	30	0.24	3.36-3	
4	35	0.331	3.56-3	
5	3	.4129	96928	3E-03
List LaM Dim Fill Seq D				

De même, la liste List 4 va contenir toutes les valeurs de ln(k).

Déplacer le curseur sur l'entête de la liste List 4 :

Taper ensuite la formule ln(List 2).

En tapant [ENTER], la liste List 4 se remplit avec les valeurs de ln(k).

Les listes List 1 à List 4 correspondent au tableau ci-dessous :

θ / °C	k / s ⁻¹	$\frac{1}{T}$ / K ⁻¹	ln(k)
20	0,122	0,003413	-2,104
25	0,172	0,003356	-1,760
30	0,240	0,003300	-1,427
35	0,331	0,003247	-1,106

Troisième étape : Régression linéaire

Faisons maintenant la régression linéaire ; la variable x correspond aux différentes valeurs de $\frac{1}{T}$ (donc de List 3) ; la variable y correspond aux différentes valeurs de ln(k) (donc de List 4).

Revenir au menu principal puis sélectionner [STAT].

Les listes réapparaissent. Taper sur [CALC] (F2).

Pour sélectionner les colonnes, taper sur [SET] (F6).

Choisir pour 2var XList et 2var YList respectivement List 3 et List 4 en descendant le curseur et en tapant sur [List3] (F3) et [List4] (F4).

Revenir à la fenêtre précédente en tapant [EXIT].

Faire la régression en tapant [REG] (F3).

Taper sur [X] (F1).

La régression linéaire se fait et les résultats s'affichent (a = pente ; b = ordonnée à l'origine ; r = coefficient de corrélation ; $r^2 = carré de r$).

La valeur du coefficient de corrélation ($|r| \approx 1$) montre que les points sont alignés et donc que la loi d'Arrhénius est vérifiée.

La valeur de a = -6006 = $\frac{-E_A}{R}$ permet de calculer E_A = -a.R = 49,9 kJ.mol⁻¹.

La valeur de b = 18,39 = ln(A) permet de calculer la valeur du facteur préexponentionnel : $A = 9,74.10^7 \text{ s}^{-1}$.

<u>Quatrième étape : Tracé</u>

Revenir aux listes en tapant deux fois sur [EXIT].

Taper [GRPH] (F1).

Pour sélectionner les colonnes, taper sur [SET] (F6).

En utilisant le curseur et les touches F1 à F6, sélectionner pour le type de graphe "Scatter" et choisir pour XList et YList respectivement List 3 et List 4.

Revenir à la fenêtre précédente en tapant [EXIT].

Tracer le graphe en tapant [GPH1].

Pour y ajouter la droite de régression, sélectionner [X] (F1). Les résultats de la régression s'affichent.

Taper sur [DRAW] (F6)

Les points apparaissent avec la droite.

Ici, tous les points sont sur la droite ; il n'y a donc aucun point aberrant.

