Programme de colles du 09/06/2025 au 13/06/2025

1 Espaces préhilbertiens réels

- 1. Produit scalaire : Définition et exemples
- 2. Norme associée à un produit scalaire : Propriétés : $||u|| = 0 \Leftrightarrow u = 0$, $||\lambda u|| = |\lambda| ||u||$, inégalité de Cauchy-Schwarz + cas d'égalité, inégalité triangulaire, identités remarquables, identités de polarisation, identité du parallélogramme.
- 3. Orthogonalité : Théorème de Pythagore (pour 2 vecteurs et pour une famille orthogonale de p vecteurs). Orthogonal d'un sous-espace vectoriel, algorithme d'orthonormalisation de Gram-Schmidt.
- 4. Bases orthonormées d'un espace euclidien : Existence de bases orthonormées. Coordonnées d'un vecteur dans une base orthonormée. Expressions du produit scalaire et de la norme dans une base orthonormée.
- 5. Projection orthogonale sur un sous-espace de dimension finie : Projeté orthogonal d'un vecteur sur un sous-espace V de dimension finie. Inégalité de Bessel. La distance de x à V. Supplémentaire orthogonal d'un sous-espace V de dimension finie. En dimension finie, dimension de V^{\perp} .

2 Séries numériques

- 1. **Généralités :** Définition, convergence, somme et restes. Linéarité de la somme. Condition nécessaire de convergence. Séries géométriques. Séries exponentielles.
- 2. **Séries à termes positifs :** CNS de convergence. Théorèmes de comparaison et d'équivalence. Séries de Riemann.

Questions de cours

- 1. Inégalité de Cauchy-Schwarz (avec démo).
- 2. Inégalité triangulaire (avec démo).
- 3. Si $(e_1,...e_p)$ B.O.N. de V alors $p_V(x) = \sum_{k=1}^p (x|e_k)e_k$ (avec démo).
- 4. Inégalité de Bessel + $\forall y \in V$, $||x p_V(x)|| \leq ||x y||$ (avec démos).
- 5. Nature de la série $(\sum \frac{1}{n})$ et nature de la série $(\sum \frac{1}{n^2})$ (avec démo).

Exercices

Tout exercice sur le programme ci-dessus. Bien sûr, les exercices peuvent faire appel aux programmes précédents.