Mathématiques

Devoir surveillé n°3

8 novembre 2024

Durée 3h, les seuls dispositifs électriques autorisés sont vos neurones.

Instructions de présentation

Les mêmes que d'habitude : sommaire, encadrer, faire une marge, commencer un exercice en haut d'une nouvelle page, etc.

Exercice 1

Les questions sont indépendantes.

Q1 Déterminer les racines carrées de -48 + 14i.

 \mathbf{Q}_{2} Déterminer les racines cubiques de 1-i. On donnera leurs expressions sous forme exponentielle.

 \mathbf{Q}_3 Résoudre dans $\mathbb C$ l'équation (E_1) :

$$z^2 + (-1 + 9i)z - 8 - 8i = 0$$

Exercice 2

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on définit la somme $Z = \sum_{k=0}^{n} e^{ikx}$

QI Simplifier Z et la mettre sous forme exponentielle $Z=re^{i\alpha}$, où r et α sont réels.

On suppose maintenant $n \ge 2$, et on pose

$$S_n = \sum_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \dots + \sin\left(\frac{(n-1)\pi}{n}\right)$$

I

Q2 Justifier que $S_n = \sum_{k=0}^n \sin\left(\frac{k\pi}{n}\right)$.

Q₃ Démontrer que $S_n = \frac{1}{\tan\left(\frac{\pi}{2n}\right)}$

 $\mathbf{Q_4}$ En déduire la valeur de $\tan \frac{\pi}{8}$.

Q5 Déterminer $\lim_{n\to+\infty} \left(\frac{S_n}{n}\right)$.

Exercice 3

Les questions sont indépendantes.

Qı Calculer $\int_1^e \cos(\ln x) dx$ à l'aide d'un changement de variable.

Q2 Calculer $\int (t^2 + 1)e^{-t}dt$.

Q3 Calculer $\int \frac{1}{2+it} dt$

Q4 Calculer $\int_0^\pi \sin^2 x \cos^2 x dx$

Q5 Calculer $\int_{-1}^{1} \frac{1}{x^2 - 5x + 6} dx$

Exercice 4

Les questions sont indépendantes.

QI Résoudre dans \mathbb{R} l'équation différentielle $(x^2 + 1)y' + 2xy + 1 = 0$.

Q2 Résoudre dans $\mathbb R$ le problème de Cauchy y'-(x+1)(y+1)=0 et y(0)=1.

Problème 1

On se propose de résoudre l'équation (E) suivante :

$$x^3 - 12x - 8 = 0$$

Qı Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 12x - 8$.

 \mathbf{Q}_2 En déduire le nombre de solutions réelles de l'équation (E).

Q₃ Linéariser $\cos^3 \theta$.

On cherche les solutions de (E) sous la forme $x = a \cos \theta$ (avec a et θ réels).

Q4 Déterminer un réel $a\geqslant 0$ tel que résoudre l'équation (E) se ramène à résoudre une équation de la forme $\cos(3\theta)=c$, avec c un réel indépendant de θ .

 $\mathbf{Q}_{\mathbf{5}}$ Conclure en donnant les solutions de (E).

On applique maintenant la méthode de Cardan pour trouver les solutions de (E). Soit une solution x de (E) de la forme x=u+v, avec $u,v\in\mathbb{C}$.

2

Q6 Montrer qu'en fixant le produit uv = 4, on doit avoir $u^3 + v^3 = 8$.

 \mathbf{Q}_{7} En déduire les valeurs possibles de u^{3} et v^{3} (on mettra ces valeurs sous forme exponentielle).

Q8 Déterminer les couples (u, v) correspondants, puis les solutions de (E).