DL7 matrices

Exercice 5

Calculer A^n pour $n \in \mathbb{N}$ avec :

a)
$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a, b \in \mathbb{R}$$
;
b) $A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$;
c) $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \theta \in \mathbb{R}$;
d) $A = \begin{pmatrix} 3 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{pmatrix}$.

Exercice 15

On considère les matrices $A = \begin{pmatrix} -1 & 2 \\ -4 & 5 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

- 1. Montrer que P est inversible et que $P^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$.
- 2. Vérifier que $A = P \cdot D \cdot P^{-1}$.
- 3. Montrer que $A^n = P \cdot D^n \cdot P^{-1}$ pour tout $n \in \mathbb{N}$.
- 4. On considère les suites (u_n) et (v_n) définies par $u_0, v_0 \in \mathbb{R}$ et :

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{ll} u_{n+1} & = & -u_n + 2v_n \\ v_{n+1} & = & -4u_n + 5v_n \end{array} \right.$$

On pose pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

Montrer que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.

En déduire, pour tout $n \in \mathbb{N}$, (u_n) et (v_n) en fonction de u_0 et v_0 et de n.

Etudier le comportement de ces deux suites.

5. On considère deux fonction définies sur $\mathbb R$ et à valeurs réelles x et y dérivables sur $\mathbb R$.

On suppose que x et y vérifient le système différentiel suivant :

$$\begin{cases} x' = -x + 2y \\ y' = -4x + 5y \end{cases}$$

On pose
$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $X' = \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On définit deux fonctions $x_1, y_1 : \mathbb{R} \to \mathbb{R}$ par $X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $X_1 = P^{-1} \cdot X$. On pose $X_1' = \begin{pmatrix} x_1' \\ y_1' \end{pmatrix}$

Montrer que $X_1' = D \cdot X_1$.

En déduire deux équations différentielles vérifiées par x_1 et y_1 , puis déterminer les fonctions x_1 et y_1 , et en déduire les solutions x et y du système de départ.