DM4 ensembles, applications

Exercice 1

Soit $A = \{(x, y) \in \mathbb{R}^2; 4x - y = 1\}$ et $C = \{(t + 1, 4t + 3); t \in \mathbb{R}\}$. Démontrer que A = C.

Exercice 2

Soit E un ensemble et A, B, C trois éléments de $\mathcal{P}(E)$.

Démontrer que, si $A \cap B = A \cup B$, alors A = B.

Démontrer que, si $A \cap B = A \cap C$ et $A \cup B = A \cup C$, alors B = C. Une seule des deux conditions suffit-elle?

Exercice 3

Soit $f : \mathbb{N}^2 \to \mathbb{N}^*$, $(n, p) \mapsto 2^n(2p+1)$. Démontrer que f est une bijection. En déduire une bijection de \mathbb{N}^2 sur \mathbb{N} .

Exercice 4

Les applications suivantes sont-elles injectives? surjectives?

Exercice 5

Soit E un ensemble non vide. On note $\mathcal{P}(E)$ l'ensemble des parties de E.

- 1. Montrer qu'il existe une injection de E dans $\mathcal{P}(E)$.
- 2. Soit $f: E \to \mathcal{P}(E)$ une application. On considère le sous-ensemble suivant de E:

$$A = \{x \in E \mid x \notin f(x)\}.$$

Montrer qu'il n'existe pas d'élément a de E tel que A = f(a). En déduire qu'il n'existe pas d'application surjective de E dans $\mathcal{P}(E)$.