TD 14: polynomes

Exercice 1

(3991)

Décomposition à partir d'une racine

On considère le polynôme $P(X) = 2X^3 - X^2 -$ X-3.

Déterminer une racine rationnelle de P.

En déduire la factorisation de P en produit d'irréductibles de $\mathbb{C}[X]$.

Exercice 2

(3992)

A paramètres

Donner une condition nécessaire et suffisante $\operatorname{sur}(\lambda,\mu)\in\mathbb{C}^2$ pour que X^2+2 divise X^4+X^3+

Exercice 3

(3995)

Quelques équations

Résoudre les équations suivantes, où l'inconnue est un polynôme P de $\mathbb{R}[X]$:

1.
$$P(X^2) = (X^2 + 1)P(X)$$
 2. $P'^2 = 4P$ **3.** $P \circ P = P$.

Exercice 4

(3997)

En pratique!

Calculer le quotient et le reste de la division eu-

$$X^4 + 5X^3 + 12X^2 + 19X - 7 \text{ par } X^2 + 3X - 1;$$

 $X^4 - 4X^3 - 9X^2 + 27X + 38 \text{ par } X^2 - X - 7;$
 $X^5 - X^2 + 2 \text{ par } X^2 + 1.$

Exercice 5

(4004)

Calculs de pgcd

Déterminer les pgcd suivants :

Determiner les pgcd suivants :
$$P(X) = X^4 - 3X^3 + X^2 + 4 \text{ et } Q(X) = \text{Exercice 1o}$$

$$X^3 - 3X^2 + 3X - 2; \qquad \text{(4022)}$$

$$P(X) = X^5 - X^4 + 2X^3 - 2X^2 + 2X - 1 \text{ et } \text{Décomposer!}$$

$$Q(X) = X^5 - X^4 + 2X^2 - 2X + 1; \qquad \text{Soit P le p}$$

$$P(X) = X^n - 1 \text{ et } Q(X) = (X - 1)^n, n \ge 1.$$

Exercice 6

(4010)

Polynômes définis par certaines valeurs

Déterminer un polynôme de degré 2 tel que P(-1) = 1, P(0) = -1 et P(1) = -1. Ce polynôme est -il unique?

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que P(-1) = 1, P(0) = -1 et P(1) = -1.

Exercice 7

(4012)

Déterminer les racines sachant que...

Dans cet exercice, on souhaite déterminer toutes les racines de polynômes de degré 3 ou 4 connaissant des informations sur ces racines.

Soit $P(X) = X^3 - 8X^2 + 23X - 28$. Déterminer les racines de P sachant que la somme de deux des racines est égale à la troisième.

Soit $Q(X) = X^4 + 12X - 5$. On note x_1, x_2, x_3, x_4 les racines de Q. On sait que $x_1 + x_2 =$

Déterminer la valeur de x_1x_2 , x_3x_4 et $x_3 + x_4$. En déduire les valeurs des racines.

Exercice 8

(4017)

Équation

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ vérifiant P(0) = 0 et $P(X^2 + 1) = (P(X))^2 + 1$

Exercice 9

(4021)

Décomposer!

Décomposer en produits d'irréductibles de $\mathbb{R}[X]$ les polynômes suivants :

1.
$$X^4 + 1$$
 2. $X^8 - 1$ **3.** $(X^2 - X + 1)^2 + 1$

Soit *P* le polynôme $X^4 - 6X^3 + 9X^2 + 9$.

Décomposer $X^4 - 6X^3 + 9X^2$ en produit de facteurs irréductibles dans $\mathbb{R}[X]$.

En déduire une décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.