Corrigé TD chapitre 17: espaces euclidiens

Exercice 1 (4113)

Il est très facile de vérifie que $\langle .,. \rangle$ définit une forme bilinéaire symétrique. Reste à démontrer qu'elle est définie positive. Soit $A \in \mathcal{M} \setminus (\mathbb{R})$ et notons $(b\rangle, |) = A^T A$. Alors

$$b\rangle, \rangle = \sum \| = \infty \hat{n}a \|, \rangle \hat{2} \ge 0.$$

Ainsi,

$$\operatorname{tr}(A \hat{\ } TA) = \sum \rangle = \infty \hat{\ } n \sum \| = \infty \hat{\ } na\|, \rangle \hat{\ } 2 \geq 0.$$

On a bien affaire à une forme positive. De plus, si $\langle A, A \rangle = 0$, alors pour tout i = 1, ..., n et tout k = 1, ..., n, on a $a \parallel , \rangle = 0$, et donc A = 0: la forme est définie.

On va appliquer l'inégalité de Cauchy-Schwarz. Pour A, B symétriques, on a en effet

$$\langle A, B \rangle = \operatorname{tr}(AB)$$

et donc

$$(\operatorname{tr}(AB))^2 \le \operatorname{tr}(A^2)\operatorname{tr}(B^2).$$

Exercice 2

(4114)

Dans les deux exemples, la difficulté est de démontrer qu'on a affaire à une forme définie.

Si $\langle f, f \rangle = 0$, alors on a à la fois $(f(0))^2 = 0$, donc f(0) = 0, et

$$\int r^1 (f'(t))^2 dt = 0.$$

Or, $(f')^2$ est continue et positive sur [0,1]. Puisque son intégrale est nulle, c'est que f' est nulle sur [0,1]. On en déduit que f est constante sur [0,1], puis, comme f(0)=0, que f est identiquement nulle sur [0,1].

Si $f \in E$ est tel que $\langle f, f \rangle = 0$, le même raisonnement donne que $f^2w = 0$ sur [a, b], donc, puisque w ne s'annule pas sur [a, b], que f = 0 sur [a, b]. Par continuité, on en déduit que f = 0 sur [a, b] et donc que $f \equiv 0$. La forme est bien définie positive.

Exercice 3

(4115)

 ϕ définit clairement une forme bilinéaire symétrique. Reste à trouver une condition nécessaire et suffisante sur k pour qu'elle soit définie positive. On commence par calculer $\phi(a,a)=(1+k)\|a\|^2$. Pour que ceci soit strictement positif, il est nécessaire que 1+k>0. La condition k>-1 est donc nécessaire pour que ϕ soit un produit scalaire. < br> Réciproquement, on suppose que k>-1 et on va prouver que ϕ définit bien un produit scalaire. Pour cela, on distingue deux cas. D'une part, si $k\geq 0$, alors pour tout $x\in E$, $x\neq 0$, on a

$$\phi(x,x) \ge ||x||^2 > 0.$$

D'autre part, si $k \in]-1,0[$, alors $k=-\alpha$ avec $\alpha \in]0,1[$. On a alors, pour $x \in E \setminus \{0\}$,

$$\phi(x,x) = ||x||^2 - \alpha \langle x, a \rangle^2.$$

Par l'inégalité de Cauchy-Schwarz, et puisque a est un vecteur unitaire,

$$\langle x, a \rangle^2 \le ||x||^2,$$

et donc

$$\phi(x, x) \ge (1 - \alpha) ||x||^2 > 0.$$

Dans tous les cas, on a prouvé que ϕ est définie positive, donc qu'il s'agit d'un produit scalaire sur E.

Exercice 4

(4116)

Supposons que ϕ est un produit scalaire. D'abord, pour que ϕ soit symétrique, il est nécessaire que $\phi(u,v) = \phi(v,u)$ pour tous vecteurs $u,v \in \mathbb{R}^2$. Pour u=(1,0) et v=(0,1), on a

$$\phi(u,v) = b \text{ et } \phi(v,u) = c$$

et donc il est nécessaire que b=c. D'autre part, ϕ est définie positive. De $\phi(u,u)>0$ pour u=(1,0), on trouve a>0. Posons maintenant u=(x,y) et calculons $\phi(u,u)$:

$$\begin{array}{rcl} \phi(u,u) & = & ax^2 + 2bxy + dy^2 2 \\ & = & a\left(x + \frac{b}{a}y\right)^2 + \frac{ad - b^2}{a}y^2. \end{array}$$

Si x = -b et y = a, alors on trouve

$$\phi(u, u) = a(ad - b^2)$$

et pour que ceci soit strictement positif, il est nécessaire que $ad-b^2>0$.
 Réciproquement, supposons que a>0, que b=c et que $ad-b^2>0$. Alors il est facile de vérifier que ϕ est symétrique. De plus, l'écriture

$$\phi(u,u) = a\left(x + \frac{b}{a}y\right) \hat{\ } 2 + \frac{ad - b\hat{\ } 2}{a}y\hat{\ } 2$$

prouve que ϕ est bien définie positive. En effet, si $\phi(u,u)=0$, alors y=0 et $x+\frac{b}{a}y=0$ ce qui donne bien x=y=0.

Exercice 5

(4117)

Il suffit d'écrire:

$$x + y + z = \frac{1}{\sqrt{2}} \times \sqrt{2}x + 1 \times y + \frac{1}{\sqrt{5}} \times \sqrt{5}z.$$

D'après l'inégalité de Cauchy-Schwarz (pour le produit scalaire canonique sur R^3), on a

$$(x+y+z)^2 \le \left(\left(\frac{1}{\sqrt{2}}\right)^2 + 1^2 + \left(\frac{1}{\sqrt{5}}\right)^2 \right) \times (2x^2 + y^2 + 5z^2) \le \frac{17}{10}.$$

Exercice 6

(4118)

On va appliquer l'inégalité de Cauchy-Schwarz au produit scalaire canonique de \mathbb{R}^n avec les vecteurs $x = (x\infty, \dots, x\setminus)$ et $y = (1, \dots, 1)$. On trouve

$$\sum \| = \infty \widehat{\ } nx \|y\| = \sum \| = \infty \widehat{\ } nx \| \leq \left(\sum \| = \infty \widehat{\ } nx \| \widehat{\ } 2\right) \widehat{\ } 1/2 \left(\sum \| = \infty \widehat{\ } n1 \widehat{\ } 2\right) \widehat{\ } 1/2.$$

Prenant le carré de cette inégalité, on obtient l'inégalité désirée. De plus, il y a égalité si et seulement s'il y a égalité dans l'application de l'inégalité de Cauchy-Schwarz, c'est-à-dire si et seulement si les vecteurs $(x\infty,\ldots,x\setminus)$ et $(1,\ldots,1)$ sont liés; autrement dit, si et seulement si tous les x sont égaux.

Appliquons l'inégalité de Cauchy-Schwarz aux vecteurs $y=(\sqrt{x\infty},\dots,\sqrt{x\backslash})$ et $z=\left(\frac{1}{\sqrt{x\infty}},\dots,\frac{1}{\sqrt{x\backslash}}\right)$.

Alors on trouve

$$n = \sum \| = \infty \hat{\ } ny \|z\| \leq \left(\sum \| = \infty \hat{\ } nx \|\right) \hat{\ } 1/2 \left(\sum \| = \infty \hat{\ } n\frac{1}{x\|}\right) \hat{\ } 1/2$$

ce qui, mis au carré, donne l'inégalité demandé. Comme précédemment, on a égalité si et seulement si les vecteurs y et z sont liés. Puisqu'ils sont tous les deux à coordonnées strictement positives, c'est équivalent à dire qu'il existe $\lambda>0$ tel que $x\|=\frac{\lambda}{x\|}$ pour tout $k=1,\ldots,n$. Ainsi, tous les $x\|$ sont égaux et de la relation $x\infty+\cdots+x\backslash=1$, on tire $x\|=\frac{1}{n}$. Ainsi, il y a égalité si et seulement si $x\|=\frac{1}{n}$ pour tout $k=1,\ldots,n$.

Exercice 7 (4121)

Soit $y \in B^{\hat{}} \perp$. Alors, pour tout $x \in A$, on a $x \in B$ et donc $\langle x, y \rangle = 0$, ce qui prouve que $y \in A^{\hat{}} \perp$. On commence par prendre $x \in (A \cup B)^{\hat{}} \perp$, et prouvons que $x \in A^{\hat{}} \perp$. En effet, si $y \in A$, on a $y \in A \cup B$, et donc $\langle x, y \rangle = 0$. Ceci montre la première inclusion. Réciproquement, si $x \in A^{\hat{}} \perp \cap B^{\hat{}} \perp$, prenons $y \in (A \cup B)$. Alors si $y \in A$, on a bien $\langle x, y \rangle = 0$ puisque $x \in A^{\hat{}} \perp$, et le cas où $y \in B$ se résoud de la même façon.

D'après la première question, puisque $A \subset \text{vect}(A)$, on a

$$\operatorname{vect}(A)\hat{\ } \perp \subset A\hat{\ } \perp$$
.

Réciproquement, si $y \in A^{\hat{}} \perp$, prenons $x \in \text{vect}(A)$. Alors on peut trouver des éléments $a \infty, \dots, a \setminus \text{de } A$ et des scalaires $\lambda \infty, \dots, \lambda \setminus \text{tels que}$

$$x = \lambda \infty a \infty + \dots + \lambda \backslash a \backslash.$$

On a alors

$$\langle x, y \rangle = \langle x, \lambda \infty a \infty + \dots + \lambda \backslash a \backslash \rangle$$

$$= \lambda \infty \langle x, a \infty \rangle + \dots + \lambda \backslash \langle x, a \backslash \rangle$$

$$= \lambda \infty 0 + \dots + \lambda \backslash 0$$

$$= 0.$$

et donc $y \in \text{vect}(A)^{\hat{}} \perp$.

On va commencer par prouver que $A \subset (A^{\hat{}}\perp)^{\hat{}}\perp$. Mais, soit $x \in A$. Choisissons $y \in A^{\hat{}}\perp$. On a alors $\langle x,y \rangle = 0$, ce qui prouve que $x \in A^{\hat{}}\perp\perp$. D'autre part, $(A^{\hat{}}\perp)^{\hat{}}\perp$ est un sous-espace vectoriel de E qui contient A. Il contient donc le sous-espace vectoriel engendré par A et on a bien l'inclusion demandée.

Notons B = vect(A) et $n = \dim(E)$. Alors d'après la question précédente,

$$(A^{\hat{}} \perp)^{\hat{}} \perp = (B^{\hat{}} \perp)^{\hat{}} \perp.$$

D'autre part,

$$\dim(B^{\hat{}} \perp) = n - \dim B \implies \dim((B^{\hat{}} \perp)^{\hat{}} \perp) = n - \dim(B^{\hat{}} \perp) = \dim(B).$$

Ainsi, d'après la question précédente, on a $B \subset (B^{\hat{}} \perp)^{\hat{}} \perp$ et ces deux sous-espaces ont la même dimension. Ils sont donc égaux!

Exercice 8

(4122)

On remarque d'abord que si $A \subset B$, alors on a $B^{\hat{}} \perp \subset A^{\hat{}} \perp$, ce qui est immédiat en appliquant la définition. Ainsi, puisque $F \subset F + G$ et $G \subset F + G$, on obtient $(F + G)^{\hat{}} \perp \subset F^{\hat{}} \perp \cap G^{\hat{}} \perp$. Prenons maintenant $x \in F^{\hat{}} \perp \cap G^{\hat{}} \perp$. Tout $z \in F + G$ s'écrit z = f + g, avec $f \in F$ et $g \in G$. Alors:

$$(x,z) = (x, f) + (x, g) = 0,$$

ce qui prouve que $F^{\hat{}} \perp \cap G^{\hat{}} \perp \subset (F+G)^{\hat{}} \perp$. D'autre part, on a $F \cap G \subset F$ et $F \cap G \subset G$, ce qui donne respectivement $F^{\hat{}} \perp \subset (F \cap G)^{\hat{}} \perp$ et $G^{\hat{}} \perp \subset (F \cap G)^{\hat{}} \perp$. Puisque $(F \cap G)^{\hat{}} \perp$ est un sous-espace vectoriel, il est stable par addition, et donc on a $F^{\hat{}} \perp + G^{\hat{}} \perp \subset (F \cap G)^{\hat{}} \perp$. Dans le cas où E est un espace de dimension finie, on peut obtenir l'autre inclusion en comparant les dimensions des sous-espaces :

$$\begin{split} \dim(F\,\widehat{}\perp + G\,\widehat{}\perp) &= \dim F\,\widehat{}\perp + \dim G\,\widehat{}\perp - \dim(F\,\widehat{}\perp \cap G\,\widehat{}\perp) \\ &= \dim(F\,\widehat{}\perp) + \dim(G\,\widehat{}\perp) - \dim(F + G)\,\widehat{}\perp \\ &= \dim(E) - \dim(F) - \dim(G) + \dim(F + G) \\ &= \dim(E) - \dim(F \cap G) \\ &= \dim((F \cap G)\,\widehat{}\perp). \end{split}$$

Exercice 9 (4130)

Il est clair qu'on définit ainsi une forme bilinéaire symétrique et que $\langle P, P \rangle \geq 0$. De plus, si $\langle P, P \rangle = 0$, alors

$$\sum \|= \iota \hat{\ } n P^2(a\|) = 0 \implies P(a\|) = 0 \text{ pour } k = 1, \dots, n.$$

Or, un polynôme de degré au plus n ayant au moins n+1 racines est le polynôme nul. Donc P=0 et la forme bilinéaire est définie positive : c'est un produit scalaire.

Contrairement à ce que l'on fait souvent, ici, utiliser le procédé de Gram-Schmidt pour trouver une base orthonormale n'est pas la bonne idée. Il faut plutôt raisonner en terme de racines et voir que si P s'annule en beaucoup de $a\|$, alors $P(a\|)Q(a\|)$ sera souvent nul. On va donc définir, pour $k=0,\ldots,n$

$$P|| = \prod | \neq ||(X - a|).$$

Il est clair que, pour $k \neq l$, on a

$$\langle P \parallel, P \updownarrow \rangle = P \parallel (a \parallel) P \updownarrow (a \parallel) = 0.$$

La famille est donc orthogonale. On l'orthonormalise en remarquant que

$$||P|||^2 = \prod |\neq ||(a||-a|)^2$$

et on pose donc

$$Q\| = \frac{P\|}{\prod | \neq \|(a\| - a\|)}.$$

 $(Q', \dots, Q \setminus)$ est une famille orthonormale de n+1 éléments dans un espace de dimension n+1. C'est une base de $\mathbb{R} \setminus [X]$.

On va trouver un vecteur normal à l'hyperplan H. C'est très facile en regardant la définition de H, car si on pose R=1, on a

$$\langle P, R \rangle = \sum \| = \iota \hat{n} P(a\|).$$

R est donc un vecteur normal à H. Par une formule du cours (très facile à retrouver par un dessin), on en déduit que la distance de Q à H est

$$\frac{\langle Q, R \rangle}{\|R\|} = \frac{\sum \| = \iota \hat{n} Q(a\|)}{\sqrt{n+1}}.$$

Exercice 10 (4140)

Soit $(e\infty,\ldots,e\setminus)$ une base orthonormale de E. Alors on a, pour tout i,j dans $\{1,\ldots,n\}$,

$$\langle f(e)\rangle, f(e)\rangle = \langle e\rangle, e\rangle$$

ce qui prouve bien que (f(e)) est une base orthonormale de E.

On travaille toujours dans la base orthonormée précédente. Prenons $x \in E$ et écrivons-le

$$x = \sum \rangle = \hat{n}\langle x, e \rangle \rangle e \rangle.$$

Alors

$$\langle f(x), f(e) \rangle \rangle = \langle x, e \rangle \rangle.$$

De plus, puisque $(f(e\infty), \dots, f(e))$ est une base orthonormale de E, on sait que

$$f(x) = \sum_{\alpha} \langle -n\langle f(x), f(e)\rangle \rangle f(e)$$
$$= \sum_{\alpha} \langle -n\langle x, e\rangle \rangle f(e)\rangle.$$

Autrement dit, on a prouvé que si on écrit $x=\sum \rangle=\infty \hat{\ } nx\rangle e\rangle$, alors $f(x)=\sum \rangle=\infty \hat{\ } nx\rangle f(e\rangle)$. Ceci suffit à prouver que f est linéaire. En effet, prenons également $y=\sum \rangle=\infty \hat{\ } ny\rangle e\rangle \in E$ et $\lambda \in \mathbb{R}$. Alors on a d'une part :

$$\begin{split} f(x) &=& \sum \rangle = \infty \hat{\ } nx \rangle f(e \rangle) \\ f(y) &=& \sum \rangle = \infty \hat{\ } ny \rangle f(e \rangle) \\ f(x) + \lambda f(y) &=& \sum \rangle = \infty \hat{\ } n(x \rangle + \lambda y \rangle) f(e \rangle) \end{split}$$

et d'autre part

$$x + \lambda y = \sum_{\alpha} \langle -\infty \hat{n}(x) + \lambda y \rangle e \rangle$$
$$f(x + \lambda y) = \sum_{\alpha} \langle -\infty \hat{n}(x) + \lambda y \rangle f(e)$$

ce qui prouve bien que f est linéaire.

Exercice 11 (1295)

 φ est clairement une forme bilinéaire symétrique. On a aussi $\varphi(f,f) \geq 0$ et

$$\varphi(f, f) = 0\langle 10233\rangle f(0) = 0 \text{ et } f' = 0$$

car $f^{'2}$ est continue, positive et d'intégrale nulle. On en déduit $\varphi(f, f) = 0\langle 10233\rangle f = 0$

Exercice 12

(1304)

Par l'inégalité de Cauchy-Schwarz appliquée au produit scalaire canonique sur \mathbb{R}^n

$$\left(\sum_{k=1}^{n} x_k\right)^2 = \left(\sum_{k=1}^{n} x_k 1\right)^2 \le \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} 1^2\right) = n \sum_{k=1}^{n} x_k^2$$

Il y a égalité si, et seulement si, $(x_1, ..., x_n)$ et (1, ..., 1) sont colinéaires i.e. $: x_1 = ... = x_n$.

Exercice 13

(1305)

Par l'inégalité de Cauchy-Schwarz

$$\left(\sum_{k=1}^{n} \frac{1}{\sqrt{x_k}} \sqrt{x_k}\right)^2 \le \sum_{k=1}^{n} \frac{1}{x_k} \sum_{k=1}^{n} x_k$$

Donc $\sum_{k=1}^n \frac{1}{x_k} \ge n^2 \text{ De plus, il y a \'egalit\'e si, et seulement si, il y a colin\'earit\'e des n -uplets}$

$$\left(\frac{1}{\sqrt{x_1}}, \dots, \frac{1}{\sqrt{x_n}}\right)$$
 et $(\sqrt{x_1}, \dots, \sqrt{x_n})$

ce qui correspond au cas où

$$\frac{\sqrt{x_1}}{1/\sqrt{x_1}} = \dots = \frac{\sqrt{x_n}}{1/\sqrt{x_n}}$$

soit encore

$$x_1 = \ldots = x_n = 1/n$$