Devoir libre n° 19: π est irrationnel

pour vendredi 20 avril 2018

1. Où l'on prépare soigneusement le terrain.

Soient a et b dans \mathbb{N}^* . Pour tout $n \in \mathbb{N}$ on considère P_n la fonction définie pour tout $x \in \mathbb{R}$ par

$$P_n(x) = \frac{1}{n!}x^n(bx - a)^n$$

 $\mathbf{Q}_{\mathbf{I}}$ Justifier rapidement que P_n est infiniment dérivable.

Rappel : quand elle existe, on note $f^{(k)}$ la dérivée k-ième d'une fonction f.

Q2 Déterminer $P_n^{(2n)}(0)$ et $P_n^{(2n)}\left(\frac{a}{b}\right)$.

Q3 Soit p > 2n, déterminer $P_n^{(p)}(0)$ et $P_n^{(p)}\left(\frac{a}{b}\right)$.

Q4 Soit p < n, déterminer $P_n^{(p)}(0)$ et $P_n^{(p)}\left(\frac{a}{b}\right)$.

Pour $x \in \mathbb{R}$, on pose $f(x) = x^n$ et $g(x) = (bx - a)^n$.

Q5 Pour tout $k\in\mathbb{N}$, calculer $f^{(k)}(0),$ $g^{(k)}(0),$ $f^{(k)}\left(\frac{a}{b}\right)$ et $g^{(k)}\left(\frac{a}{b}\right)$

Q6 Soit p tel que $n \le p \le 2n-1$. À l'aide de la formule de Leibnitz, pour $x \in \mathbb{R}$, développer $(fg)^{(p)}(x)$. Vérifier que si x=0 ou $x=\frac{a}{b}$, un seul terme de la somme est non nul.

I

Qz Calculer $(fg)^{(p)}(0)$ et $(fg)^{(p)}\left(\frac{a}{b}\right)$.

Q8 Montrer que pour tout $p \in \mathbb{N}$, $P_n^{(p)}(0) \in \mathbb{Z}$ et $P_n^{(p)}\left(\frac{a}{b}\right) \in \mathbb{Z}$.

2. Où le suspens s'installe : et si π était rationnel ?

Supposons désormais que $\pi = \frac{a}{b}$, avec $a, b \in \mathbb{N}^*$.

Pour tout $n \in \mathbb{N}$, on pose

$$I_n = \int_0^{\pi} P_n(t) \sin t dt$$

Qo Montrer que pour tout $n \in \mathbb{N}$,

$$I_n = \sum_{k=0}^{n} (-1)^{k+1} \left[P_n^{(2k)}(t) \cos t \right]_0^{\pi} + \sum_{k=0}^{n-1} (-1)^k \left[P_n^{(2k+1)}(t) \sin t \right]_0^{\pi}$$

(on pourra intégrer 4 fois par parties).

Q10 En déduire, en utilisant les préparatifs, que pour tout $n \in \mathbb{N}$, $I_n \in \mathbb{Z}$.

Q11 Montrer que $\forall n \in \mathbb{N}, I_n \neq 0$.

On pose
$$M = \sup \Big\{ |x(bx-a)| \mid x \in \Big[0, \frac{a}{b}\Big] \Big\}.$$

 \mathbf{Q}_{12} Justifier l'existence de M et le calculer.

3. Où le dénouement libère la vérité par une majoration salvatrice

Q13 Montrer que $\forall n \in \mathbb{N}$,

$$|I_n| \leqslant \pi \frac{M^n}{n!}$$

Q14 Déduire une contradiction de ce qui précède, et conclure.

Bien, maintenant que π est irrationnel, on va le laisser tranquille, et prendre des vacances bien méritées :) ¹

^{1.} N'oubliez pas de réviser le cours de mathématiques depuis le début de l'année en prévision du concours blanc!