I. Calculs de sommes et de produits

• La notation $\sum\limits_{\mathbf{k}\in E}a_{\mathbf{k}}$, où E est un ensemble fini d'indices et (a_k) une famille de complexes

Propriétés, sommes à connaître, techniques de calcul : changement d'indice, séparation des termes d'indice pairs et impairs, télescopage.

La notation $\prod\limits_{k\in F}a_k$, où E est un ensemble fini d'indices et (a_k) une famille de complexes.

Propriétés, produit à connaître, techniques de calcul : changement d'indice, télescopage.

- Coefficients binomiaux, définition et propriétés. Formule du binôme de Newton et applications à la trigonométrie.
- $\bullet \ \textit{Calcul de sommes doubles} \ \ \underset{p \leq i,j \leq n}{\sum} \ a_{i,j} \ \ \text{, de sommes triangulaire} \ \ \underset{p \leq i \leq j \leq n}{\sum} \ a_{i,j} \ \ \text{ou} \ \ \underset{p \leq i < j \leq n}{\sum} \ a_{i,j} \ .$

II. Calcul d'intégrales et de primitives

• Rappel de Terminale et extension aux fonctions à valeurs complexes.

Si f est continue sur I et si $a \in I$, $x \mapsto \int_a^x f(t)dt$ est la primitive de f sur I qui s'annule en a.

La notation $\int_{0}^{x} f(t)dt$ désigne une primitive quelconque de f sur I.

• Calcul d'intégrales à l'aide de primitives usuelles et par transformation algébrique de la fonction à intégrer.

Déroulement de la colle:

- 1 Donner deux formules du formulaire n°1 ci-joint
- 2 Une question de cours parmi
 - Démonstration de la formule du binôme de Newton
 - Calcul de $\sum_{k=0}^{n} \cos(kx)$ et de $\sum_{k=0}^{n} \sin(kx)$ où x est un réel.
 - Calcul d'une primitive de $f: x \mapsto \cos^p x \sin^q x$ sur un exemple
 - Calcul d'une primitive de $f: x \mapsto e^{\alpha x} \cos(bx)$ sur un exemple
- 3 Calcul d'une somme double
- 4 Exercice sur les sommes et le calcul de primitives.

Evaluation: Connaître son cours est une condition nécessaire pour obtenir une note > 10

Formulaire 1

1.
$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ \left(\mid x \mid = n \Leftrightarrow n \leq x < n+1 \right)$$

2. Sous réserve d'existence,
$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

3. Sous réserve d'existence,
$$(g \circ f)' = f' \times (g' \circ f)$$

4.
$$\forall a,b \in \mathbb{R}$$
, $\cos(a+b) = \cos a \cosh - \sin a \sinh \sin(a+b) = \sin a \cosh + \cos a \sinh b$

5.
$$\forall a \in \mathbb{R}$$
, $\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - \sin^2 a$
 $\sin(2a) = 2\cos a \sin a$

6. Sous réserve d'existence :
$$tan(a + b) = \frac{tan a + tan b}{1 - tan a tan b}$$

$$tan(2a) = \frac{2tan a}{1 - tan^2 a}$$

7. Sous réserve d'existence :
$$cos(x) = \frac{1-t^2}{1+t^2}$$
 et $sin(x) = \frac{2t}{1+t^2}$ où $t = tan \frac{x}{2}$

8.
$$\forall a,b \in \mathbb{R}$$
, $\cos a + \cos b = 2\cos\frac{a-b}{2}\cos\frac{a+b}{2}$
 $\cos a - \cos b = -2\sin\frac{a-b}{2}\sin\frac{a+b}{2}$
 $\sin a + \sin b = 2\cos\frac{a-b}{2}\sin\frac{a+b}{2}$
 $\sin a - \sin b = 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}$

9.
$$\forall a,b \in \mathbb{R}$$
 $\cos a \cos b = \frac{1}{2} (\cos(a-b) + \cos(a+b))$
 $\sin a \sin b = \frac{1}{2} (\cos(a-b) - \cos(a+b))$
 $\sin a \cos b = \frac{1}{2} (\sin(a-b) + \sin(a+b))$

10.
$$\forall a, b \in \mathbb{R}, \exp(a + b) = \exp(a)\exp(b)$$

 $\forall a, b \in \mathbb{R}^{*}, \ln(ab) = \ln(a) + \ln(b)$

11.
$$\forall x \in \mathbb{R}$$
, $e^x \ge x + 1$, $\forall x > 0$, $\ln(x) \le x - 1$ $\forall x \in \mathbb{R}$, $|\sin(x)| \le |x|$

12.
$$\forall a \in \mathbb{R}^*$$
, $\forall b \in \mathbb{R}$, $a^b = e^{b \ln(a)}$

13. Soit
$$\alpha$$
 fixé dans \mathbb{R} , $f_{\alpha}: x \mapsto x^{\alpha}$ est dérivable sur]0, + ∞ [et $f_{\alpha}'(x)$ = $\alpha x^{\alpha-1}$

14.
$$\forall x \in \mathbb{R}$$
, $ch(x) = \frac{e^x + e^{-x}}{2}$ et $sh(x) = \frac{e^x - e^{-x}}{2}$

16.
$$\forall x \in \mathbb{R}$$
, $ch^2(x) - sh^2(x) = 1$, $ch(x) + sh(x) = e^x et ch(x) - sh(x) = e^{-x}$

17.
$$\forall z, z' \in \mathbb{C}$$
 $||z| - |z'|| \le |z + z'| \le |z| + |z'|$

$$z + \overline{z} = 2 \operatorname{Re}(z)$$

18.
$$\forall z, z' \in \mathbb{C}$$
, $z + \overline{z} = 2 \operatorname{Re}(z)$ $z - \overline{z} = 2 \operatorname{Im}(z)$

$$|z|^2 = z\overline{z}$$

19.
$$\forall z \in \mathbb{C}$$
, $z \in \mathbb{R} \Leftrightarrow \text{Im}(z) = 0 \Leftrightarrow z = \overline{z} \text{ et } z \in \mathbb{R}^* \Leftrightarrow \text{arg}(z) = k\pi, k \in \mathbb{Z}$

$$z \in i\mathbb{R} \Leftrightarrow \text{Re}(z) = 0 \Leftrightarrow z = -\overline{z} \text{ et } z \in i\mathbb{R}^* \Leftrightarrow \text{arg}(z) = \pi/2 + k\pi, k \in \mathbb{Z}$$

$$20. \ \forall \theta \in \mathbb{R} \qquad 1 + e^{i\theta} = 2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}} \qquad 1 - e^{i\theta} = -2i\sin\frac{\theta}{2}e^{i\frac{\theta}{2}}$$

21. Si
$$z_1$$
 et z_2 sont les solutions, éventuellement confondues de $az^2 + bz + c$ avec $a \neq 0$.

alors S =
$$z_1 + z_2 = -\frac{b}{a}$$
 et P = $z_1z_2 = \frac{c}{a}$

22. Soit S et P fixés dans
$$\mathbb{C}$$
,
$$\begin{cases} z_1 + z_2 = S \\ z_1 z_2 = P \end{cases} \Leftrightarrow z_1 \text{ et } z_2 \text{ racines de } Z^2 - SZ + P = 0$$

23
$$\mathbb{U}_n = \{ z \in \mathbb{C} | z^n = 1 \} = \{ e^{i2k\pi/n}, k \in [0, n-1] \} = \{ 1, \omega, \omega^2, ..., \omega^{n-1} \} \text{ avec } \omega = e^{i2\pi/n}.$$

24.
$$\sum_{z \in \mathbb{U}_n} z = \sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = 0$$

25.
$$j = e^{i2\pi/3}$$
 $j^3 = 1$ $\mathbb{U}_3 = \{1, j, j^2\}$ $1 + j + j^2 = 0$ $j^2 = j$

26.
$$\forall n \in \mathbb{N}^*$$
, $\sum_{k=1}^n k = 1 + 2 + ... + n = \frac{n(n+1)}{2}$

$$\sum_{k=1}^{n} k^{2} = 1^{2} + 2^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + ... + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

27.
$$\forall q \in \mathbb{C}$$
, $\sum_{k=0}^{n} q^{k} = 1 + q + q^{2} + ... + q^{n} = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1 \\ n + 1 & \text{si } q = 1 \end{cases}$

28.
$$\forall a, b \in \mathbb{C}, \forall n \in \mathbb{N}^*, a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^{n-1-k} b^k = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$$

$$\textbf{29. Soit } n \in \textbf{et } k \in \llbracket 1, \, n \rrbracket, \, \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \text{ et } \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$

$$\textbf{30. Soit a et } b \in \mathbb{C}, \, \text{et } n \in IN, \, \, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$a=b=1 \text{ donne } \sum_{k=0}^{n} \binom{n}{k} = 2^{n} \qquad a=1 \text{ et } b=-1 \text{ donne } \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} = 0$$