Dans ce chapitre I désigne un intervalle non trivial et $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

Introduction: Notion d'équations différentielles:

Une équation différentielle (E) est une équation dont l'inconnue est une fonction le plus souvent notée y ou z, dérivable au moins une fois sur I. Cette équation doit nécessairement faire apparaître au moins une dérivée de la fonction inconnue.

Résoudre ou intégrer (E) sur I c'est trouver toutes les fonctions f solutions de (E) sur I.

Exemples:
$$(E_1): y' = \frac{1}{x \ln x}$$
 $(E_2): y' + y = e^{\dagger}$ $(E_3): y' + 2y = 3 \text{ et } y(1) = 2$ $(E_4): 2y'' + 3y' + y = 0$ $(E_5): xz' + z = 1$ $(E_6): t^2x'' + (1+t)x - 2 = 0$ $(E_7): \frac{dC_A}{dt} = -kC_A$

Vocabulaire:

- * Le terme ne contenant ni y, ni ses dérivées est appelé second membre de l'équation.
- ★ On dit que (E) est homogène (ou sans second membre) lorsque le second membre est nul.
- \star On dit que (E) est **linéaire** lorsque son équation homogène associée (H) vérifie la propriété : Si et g sont solution de (H) alors pour tous réels α et β , la fonction h = α f + β g est aussi solution de (H).
- * Les représentations graphiques des solutions de (E) sont appelées courbes intégrales de (E).
- * Une solution f de (E) est une solution particulière de (E).
- ★ On peut de plus imposer à y ou à une de ses dérivées de prendre une valeur donnée en un point donné : ce sont les conditions initiales.

Exemple fondamental: Déterminer les primitives de f sur I revient à résoudre l'équation différentielle y' = f

1. Equations différentielles linéaires du 1er ordre

1.1 Généralités

Def: On appelle équation différentielle linéaire du 1er ordre, toute équation pouvant s'écrire sous la forme: y' + a(x)y = b(x) (E) forme normalisée où a et b désignent des fonctions continues d'un intervalle I dans \mathbb{K} .

Exemples: (E_1) (E_2) , (E_5) et (E_7)

Vocabulaire:

- ★ b(x) est le second membre de l'équation.
- * L'équation homogène associée à (E) est (H): y' + a(x)y = 0
- * f est solution de (E) sur I ssi $\begin{cases} f \text{ est d\'erivable sur I} \\ \forall x \in I, \ f'(x) + a(x)f(x) = b(x) \end{cases}$

1.2 Structure de l'ensemble des solutions de (E)

Proposition 7.1: Les solutions de (E) s'obtiennent en faisant la somme des solutions de l'équation homogène associée (H) et d'une solution particulière. Ainsi si f est une solution de (E), $S = \{f + h, h \text{ solution de } (H)\}$ <u>Conséquence</u>: Pour résoudre (E) il suffit de résoudre (H) et de déterminer une solution particulière de (E).

1.3 Résolution de l'équation homogène

Théorème 7.1: Soit a une fonction continue de I dans \mathbb{K} .

Les solutions de y' + a(x)y = 0 (H) sont les fonctions définies sur I par $\forall x \in I$, $f_{\lambda}(x) = \lambda e^{-A(x)}$ où A est une primitive de a sur I et λ décrit \mathbb{K} .

$$\Rightarrow$$
 Application: Résoudre dans $\mathbb{R}: (x^2+1)y' + xy = 0$

Annexe 1

Remarques:

* A est une primitive choisie arbitrairement donc elle peut s'écrire:

$$A(x) = \int_{x_0}^{x} a(t)dt$$
 où x_0 est un réel quelconque de I.

- ★ La fonction nulle est toujours solution de l'équation homogène.
- * Si f est une solution de (H) différente de la fonction nulle alors f ne s'annule pas sur I.
- ★ On appelle solution générale de (H) la fonction $f_{\lambda}: x \to \lambda e^{-A(x)}$, $\lambda \in \mathbb{K}$.

Cas particulier où la fonction a est constante sur I

Corollaire 7.2 : Soit a fixé dans \mathbb{K} . Les solutions de l'équation différentielle y' = ay sont toutes les fonctions $f_{\lambda}: x \mapsto \lambda e^{ax}$ où λ décrit \mathbb{K} .

Preuve:
$$y' = ay \Leftrightarrow y' - ay = 0$$
 et une primitive de $x \mapsto -a$ est $x \mapsto -ax$.

<u>Exemple</u>: Les solutions de l'équation différentielle y' = y sont les fonctions $f_{\lambda}: x \mapsto \lambda e^{x}$ où λ décrit \mathbb{K} .

1.4 Résolution de l'équation avec second membre

Par application de la proposition 7.1, le problème se ramène à trouver une solution particulière de (E).

- * <u>Solution évidente</u>: Il faut toujours regarder si on peut trouver facilement une solution particulière, en particulier une solution constante.
- \ge Exercice: Résoudre dans \mathbb{R} : $(x^2+1)y' + xy = 2x$
- * Recherche directe d'une solution lorsque a est constante sur I.
- ① $b(x) = P(x)e^{mx}$ où P est un polynôme et m un complexe, on cherche une solution particulière de la même forme.
- Exercice: Résoudre dans \mathbb{R} : y'-2y = (\dagger^2 + 1) e^{\dagger}
- ② Si a est une constante réelle et $b(x) = Re(P(x)e^{mx})$ ou $b(x) = Im(P(x)e^{mx})$. On détermine une solution particulière à valeurs complexes y_0 de $y' + a(x)y = P(x)e^{mx}$ à l'aide du point précédent et on prend $Re(y_0)$ ou $Im(y_0)$.

Exercice: Résoudre dans R: y' - y = xcosx

<u>Remarque</u>: Si b(x) = $\alpha \cos(\omega x)$ ou b(x) = $\beta \sin(\omega x)$, on pourra directement chercher une solution particulière de la forme $x \mapsto \lambda \cos(\omega x) + \mu \sin(\omega x)$ of équation suivante

★ Principe de superposition des solutions

```
Proposition 7.3: Si f_1 est solution de y' + a(x)y = b_1(x) sur I et f_2 solution de y' + a(x)y = b_2(x) sur I alors f_0 = f_1 + f_2 est solution de y' + a(x)y = b_1(x) + b_2(x) sur I.
```

 \ge Exercice: Résoudre dans \mathbb{R} : y' + y = $2\sin^2 x$

★ Méthode de variation de la constante:

La solution générale de l'équation homogène étant $x\mapsto \lambda e^{-A(x)}$ on va chercher une solution de la

forme
$$f: x \mapsto \varphi(x)e^{-A(x)}$$

la constante devient une fonction.

f est solution de (E)
$$\Leftrightarrow \forall x \in I$$
, $\varphi'(x)e^{-A(x)} - a(x)\varphi(x)e^{-A(x)} + a(x)\varphi(x)e^{-A(x)} = b(x)$
 $\Leftrightarrow \forall x \in I$, $\varphi'(x) = b(x)e^{A(x)}$

 φ est donc une primitive de $x \mapsto b(x)e^{A(x)}$, sur I que l'on choisit arbitrairement.

On peut écrire
$$\varphi(x) = \int_{x_0}^{x} b(t)e^{A(t)}dt$$
 avec x_0 arbitrairement choisi dans I

<u>M Attention</u>: Cette méthode est générale mais elle peut mener à une recherche de primitive difficile à expliciter, ce n'est donc pas la méthode à privilégier à priori. Retenir l'égalité cidessous n'est pas utile, il suffit de remplacer y dans l'équation pour aboutir à $\varphi'(x) = \dots$

$$\geq$$
 Exercice : Résoudre dans \mathbb{R} : y' + 2ty = e^{t-t^2}

Remarque: Notons que nous avons trouvé une expression générale des solutions de (E):

 $f_{\lambda}:x\mapsto \lambda e^{-A(x)}+B(x)e^{-A(x)}$ où B est une primitive de de $x\mapsto b(x)e^{A(x)}$ sur I et k une constante quelconque de \mathbb{K} .

Ou encore
$$f_{\lambda}(x) = \left(\lambda + \int_{x_0}^{x} b(t)e^{A(t)}dt\right)e^{-A(x)}, \ \lambda \in \mathbb{K} \text{ et } x_0 \text{ arbitrairement fixé dans I}$$

1.4 Problème de Cauchy du 1er ordre

Proposition 7.4: Soit a et b deux fonctions continues de I dans \mathbb{K} et $x_0 \in I$ et $y_0 \in \mathbb{K}$,

 $y(x_0) = y_0$ est une condition initiale et

Le problème de Cauchy
$$\begin{cases} y' + a(x)y = b(x) \\ y(x_0) = y_0 \end{cases}$$
, admet une unique solution sur I

 \geq Exercice: Résoudre dans IR, $(x^2 + 1)y' + xy = 2x$ et y(0) = -1.

2. Equation différentielle linaire du second ordre à coefficients constants

On s'intéresse dans ce paragraphe aux équations différentielles du type (E_4) : 2y'' + 3y' + y = 0

2.1 Présentation et structure de l'ensemble des solutions :

Def: On appelle équation différentielle linéaire du 2nd ordre à coefficients constants, toute équation pouvant s'écrire sous la forme: ay'' + by' + cy = u(x) (E),

où a, b et c sont des constantes, a \neq 0 et u est une fonction continue de I dans \mathbb{K} .

Vocabulaire:

- ★ u(x) est appelé second membre de l'équation.
- ★ L'équation homogène associée à (E) est (H) :ay" + by' + cy = 0
- \star f est **solution** de (E) sur I ssi f est deux fois dérivable sur I et $\forall x \in I$, af''(x) + bf'(x) + cf(x) = u(x).

Proposition 7.5: La solution générale de (E) s'obtient en faisant la somme de la solution générale de (H) et d'une solution particulière de (E)

Même preuve que pour le 1er ordre

2.2 Solutions à valeurs complexes de l'équation homogène

Théorème 7.2: Résolution de ay" + by' + cy = 0 dans le cas complexes

Soit (H): ay'' + by' + cy = 0, avec a, b, $c \in \mathbb{C}$, $a \neq 0$, on appelle équation caractéristique de (H) l'équation du second degré $ar^2 + br + c = 0$ et on note $\Delta = b^2 - 4ac$, $\Delta \in \mathbb{C}$.

- Si Δ = 0. alors l'équation caractéristique admet une racine double r_0 et les solutions de (H) sur \mathbb{R} sont les fonctions : $x \mapsto (\lambda x + \mu)e^{r_0x}$ où (λ, μ) décrit \mathbb{C}^2 .
- Si $\Delta \neq 0$ alors l'équation caractéristique admet deux racines complexes distinctes r_1 et r_2 et les solutions de (H) sur $\mathbb R$ sont les fonctions : $x \mapsto \lambda e^{r_1 x} + \mu e^{r_2 x}$, où (λ, μ) décrit $\mathbb C^2$.
- Exercice: Déterminer les solutions à valeurs complexes de y" (1 + 2i)y' + 2iy = 0

2.3 Solutions à valeurs réelles de l'équation homogène :

Lorsque a, b, c sont réels et le second membre est à valeurs réelles, on se contentera de déterminer les solutions de (E) à valeurs réelles.

Théorème 7.3: Résolution de ay" + by' + cy = 0 dans le cas réel

Soit (H): ay'' + by' + cy = 0, avec a, b, $c \in \mathbb{R}$, $a \neq 0$.

On appelle équation caractéristique de (H) l'équation du second degré ar 2 + br + c = 0 et on note Δ = b^2 - 4ac, on a $\Delta \in \mathbb{R}$.

- ① Si Δ > 0 alors l'équation caractéristique admet deux racines réelles r_1 et r_2 et les solutions réelles de (H) sur \mathbb{R} sont les fonctions : $x \mapsto \lambda e^{r_1 x} + \mu e^{r_2 x}$ où (λ, μ) décrit \mathbb{R}^2 .
- ② Si Δ = 0. alors l'équation caractéristique admet une racine double r_0 et les solutions réelles de (H) sur $\mathbb R$ sont les fonctions : $x \mapsto (\lambda x + \mu)e^{r_0x}$ où (λ, μ) décrit $\mathbb R^2$.
- ③ Si Δ < 0 alors l'équation caractéristique admet deux solutions complexes conjuguées α + i β et α i β , et les solutions de réelles (H) sur sont les fonctions : $x \mapsto e^{\alpha x} \left(\lambda \cos(\beta x) + \mu \sin(\beta x)\right)$ où (λ, μ) décrit \mathbb{R}^2 .
- Exercice: Déterminer les solutions à valeurs réelles de y " + y' + y = 0
- Dans la pratique : On rencontre en physique les équations suivantes :
- ① y" ω^2 y = 0 les solutions sont $t \mapsto \lambda ch(\omega t) + \mu sh(\omega t)$ où (λ, μ) décrit \mathbb{R}^2
- ② y" + ω^2 y = 0 les solutions sont $t \mapsto \lambda \cos(\omega t) + \mu \sin(\omega t)$ où (λ, μ) décrit \mathbb{R}^2

2.4 Equation avec second membre

Le problème se ramène à trouver une solution particulière de (E).

- ★ Si u est constante : on cherche une solution constante.
- $\star \underline{Si\ u(x)} = P(x)e^{mx}$ où P est un polynôme et m un complexe, on cherche une solution particulière de la de la forme $x \mapsto Q(x)e^{mx}$ où Q est aussi un polynôme.
- Exercice: Résoudre y" 3y' +2y = x2ex
- * Si les coefficients sont réels et $u(x) = Re(P(x)e^{mx})$ ou $u(x) = Im(P(x)e^{mx})$. On détermine une solution particulière y_0 de ay" + by' + cy = $P(x)e^{mx}$ en appliquant la méthode précédente et on prend $Re(y_0)$ ou $Im(y_0)$
- ★ Principe de superposition des solutions

Proposition 7.6: Si f_1 est solution de ay" + by' + cy = $u_1(x)$ sur I et f_2 solution de ay" + by' + cy = $u_2(x)$ sur I alors $f_0 = f_1 + f_2$ est solution de ay" + by' + cy = $u_1(x)$ + $u_2(x)$ sur I.

 \ge Exercice : Résoudre y" + y' + y = $x\cos(x) + 1$

2.5 Problème de Cauchy du 2nd ordre

Proposition 7.7 (Admis): Soit $x_0 \in I$, y_0 et y_1 fixés dans \mathbb{K} et P un polynôme. Le problème de

Cauchy:
$$\begin{cases} ay'' + by' + cy = P(x)e^{mx} \\ y(x_0) = y_0 & \text{où } a, b, c, m \in \mathbb{C}, a \neq 0 \text{ admet une unique solution.} \\ y'(x_0) = y_1 \end{cases}$$

<u>Dans la pratique</u>: On écrit la solution générale de l'équation et on détermine les constantes grâce aux conditions initiales.

$$\ge$$
 Exercice: Résoudre y" - 2y' + y = 3, y(0) = 1 et y'(0) = 0

Annexe 1 : Quelques courbes intégrales de $(x^2+1)y' + xy = 0$ avec Python

• Script pour tracer une famille de courbes:

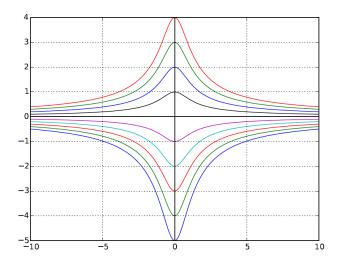
```
def f(t,k):
    return k/sqrt(t**2+1) # on définit f_k

import numpy as np #on charge la bibliothèque numpy et on la nomme np import matplotlib.pyplot as pl #on charge la bibliothèque graphique et on la nomme pl x=np.linspace(-10,10,200) #on crée une liste de valeurs pour x

for k in range(-5,5):
    y=f(x,k) #on calcule 200 valeurs de f_k(x), on obtient ainsi 10 listes. pl.plot(x,y) #pour chaque valeur entière de k de -5 à 5, on trace le graphe de f_k

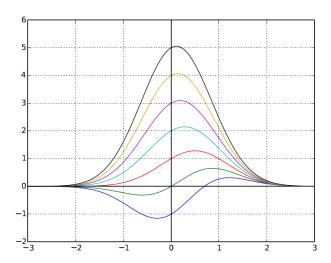
pl.grid() #on fait une grille, c'est plus joli pl.axhline(color='black') #trace l'axe des abscisses pl.axvline(color='black') #trace l'axe des ordonnées pl.savefig('courbe-intégrale-1.pdf') #on sauve le graphique au format pdf pl.show() #on demande à Python de nous montrer le résultat
```

• On admire le résultat



Annexe 2 : Quelques courbes intégrales de y' + 2ty = e^{t - t²} avec Python

On modifie le script (à vous...) et on obtient :



Annexe 3 : Preuve du théorème 7.2

On cherche ici les solutions de (H) à valeurs dans C.

- On commence par chercher les solutions de la forme $g: x \mapsto e^{r \cdot x}$ où r est une constante complexe. On remplace : g solution de (H) \Leftrightarrow ... \Leftrightarrow ar 2 + br + c = 0 (EC) Cette équation du 2^{nd} degré est <u>l'équation caractéristique de (H)</u>.
- Soit r_1 et r_2 les solutions dans \mathbb{C} , éventuellement confondues de (EC), les fonctions $x \mapsto e^{r_1 x}$ et $x \mapsto e^{r_2 x}$ sont donc solutions de (H) ainsi que $x \mapsto ke^{r_1 x}$ et $x \mapsto ke^{r_2 x}$ où $k \in \mathbb{C}$.
- On effectue le changement d'inconnue $z = ye^{-r_1x}$.

on a donc
$$\forall x \in \mathbb{R}$$
, $z(x) = y(x)e^{-r_ix} \Leftrightarrow y(x) = z(x)e^{r_ix}$.

$$\forall x \in \mathbb{R}, y'(x) = z'(x) e^{r_1 x} + r_1 z(x) e^{r_1 x}$$

et y"(x) = z"(x)
$$e^{r_1 x} + r_1 z'(x) e^{r_1 x} + r_1 z'(x) e^{r_1 x} + r_1^2 z(x) e^{r_1 x}$$
.

On remplace dans (H):

(H)
$$\Leftrightarrow \forall x \in \mathbb{R}$$
, $az''(x) + (2ar_1 + b)z'(x) + (ar_1^2 + br_1 + c)z(x) = 0$

- $\Leftrightarrow \forall x \in \mathbb{R}, az''(x) + (2ar_1 + b)z'(x) = 0$
- \Leftrightarrow z' est solution de ah'+ (2ar₁ + b)h = 0 (*) en posant h = z'

on s'est ainsi ramené au 1er ordre

• Notons Δ le discriminant de (EC)

 $\frac{1^{er} \cos : Si \Delta = 0}{1}$ alors (EC) a $r_1 = -b/2a$ comme unique solution et donc en injectant dans (*)

(H) \Leftrightarrow z' solution de f' = 0 \Leftrightarrow $\exists (A,B) \in \mathbb{C}^2$, $\forall x \in \mathbb{R}$, z(x) = Ax + B

On en déduit que les solutions de (H) sont les fonctions $f_{A,B}: x \mapsto (Ax+B)e^{r_1 \times r_2}$ où (A,B) décrit \mathbb{C}^2

 2^{nd} cas : Si $\Delta \neq 0$ alors (EC) a deux racines distinctes r_1 et r_2 de somme S = -b/a et donc en injectant dans (*)

(H)
$$\Leftrightarrow$$
 z' solution de f' = -(2r₁ + b/a)f \Leftrightarrow z' solution de f' = (r₂ - r₁)f

$$\Leftrightarrow \exists (A, B) \in \mathbb{C}^2, \forall x \in \mathbb{R}, z(x) = Ae^{(r_1+r_1)x} + B$$
.

On en déduit que les solutions de (H) sont les fonctions $f_{A,B}: x \mapsto Ae^{r_2x} + Be^{r_1x}$ où (A,B) décrit \mathbb{C}^2 .

On a établi le théorème de résolution de l'équation homogène dans le cas complexe.

Annexe 4: Preuve du théorème 7.3

Lemme: Soit a, b, c réels, $a\neq 0$ et u une fonction continue sur I à valeurs réelles. Les solutions à valeurs réelles de (E): ay'' + by' + cy = 0 sont les parties réelles des solutions de (\mathcal{E}) : ay'' + by' + cy = 0 à valeurs dans \mathbb{C} .

Démo:

• Soit $f: \mathbb{R} \to \mathbb{C}$ une solution de $(\mathcal{E}): ay'' + by' + cy = 0$. On a f = Re(f) + iIm(f)

f est deux fois dérivable et f' = (Re(f))' + i (Im(f))' + i (Im(f))'' + i (Im(f))''

f étant solution de (E) on a :

$$a[(Re(f))'' + i(Im(f))''] + b[(Re(f))' + i(Im(f))'] + c[Re(f) + iIm(f)] = 0.$$

En identifiant les parties réelles et imaginaires de chaque membre, on obtient : a(Re(f))'' + b(Re(f))' + cRe(f) = 0.

Par suite, Re(f) est bien solution de ay"+by'+cy = 0

Bilan : Les parties réelles des solutions de (\mathcal{E}) font parties des solutions à valeurs réelles de (E)

• Réciproquement, si f est une fonction solution à valeur réelle de (E), alors f est une solution à valeurs complexes de ay"+by'+cy = 0.

Or f = Ref et donc f est bien la partie réelle d'une solution de ay"+by'+cy = 0. Bilan : Les solutions à valeurs réelles de (E) font partie des parties réelles des solutions de (\mathcal{E}).

 $\mathit{CCl}:$ Les parties réelles des solutions de (\mathcal{E}) sont exactement les solutions à valeurs réelles de (E)

On en déduit que les solutions de (H) à valeurs réelles sont les parties réelles des solutions de (H) à valeurs complexes.

Considérons l'équation caractéristique et Δ = b^2 -4ac.

Ici, $\Delta \in \mathbb{R}$ et on peut considérer 3 cas:

 $\underline{1^{er} \text{ cas: } \Delta > 0}$: l'équation caractéristique à deux racines réelles r_1 et r_2 et les solutions de (H) à

valeurs complexes sont $f: x \mapsto \lambda e^{r_1 \times} + \mu e^{r_2 \times}$ avec α et $\beta \in \mathbb{C}$.

On a
$$Re(f): x \mapsto Re(\lambda)e^{r_1 x} + Re(\mu)e^{r_2 x} = Ae^{r_1 x} + Be^{r_2 x}$$
 avec A et B réels

 $\frac{2^{\grave{e}me} \ cas: \ \Delta = 0: \ l'équation \ caractéristique \ \grave{a} \ une \ racine \ double \ réelle \ x_0 \ et \ les \ solutions \ sont}{\mathsf{Re}(\mathsf{f}): x \mapsto \mathsf{Re}\left[(\lambda x + \mu)e^{r_0 x}\right] = (Ax + B)e^{r_0 x}} \ avec \ A \ et \ B \ réel$

$$\forall x \in \mathbb{R}, \operatorname{Re}(f)(x) = \dots$$

$$= \dots \qquad Après \ calculs$$

$$= e^{\alpha x}[(x_{\lambda} + x_{\mu})\cos(\beta x) + (y_{\mu} - y_{\lambda})\sin(\beta x)]$$

C'est-à-dire $Re(f): x \mapsto e^{\alpha x} [A\cos(\beta x) + B\sin(\beta x)]$ avec A et B $\in \mathbb{R}$.

On a établi le théorème de résolution de l'équation homogène dans le cas réel.