Exercices - Chapitre 9-Ensembles, applications, relation d'équivalence

♥ A savoir refaire - ♦ Corrigé

1 Ensembles

- ♥ 9.1 Soit A et B deux parties de E, on note \mathbb{I}_A et \mathbb{I}_B les fonctions indicatrices respectives de A et de B. Déterminer les fonctions indicatrices de : E, \varnothing , $A \cap B$, $A \cup B$, $A \cap B$.
- 9.2 Soit A et B deux parties de E, on définit la **différence symétrique** de A et de B comme suit: $A \triangle B = \{ x \in E, x \in A \cup B \text{ et } x \notin A \cap B \}$
- **a**. Exprimer $A \triangle B$ à l'aide des opérations usuelles sur les parties et la représenter sur un diagramme.
- **b**. Déterminer $\mathbb{R}^+ \Delta \mathbb{R}^-$,]- ∞ ;2] Δ [1 ;+ ∞ [, $A \Delta E$ et $A \Delta \varnothing$.
- c. Montrer que $\forall (A,B) \in (\mathcal{P}(E))^2$, $A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A})$
- **d**. Déterminer $A \triangle A$ puis résoudre dans $\mathfrak{P}(E)$, $A \triangle X = \emptyset$
- **e**. Démontrer que $\mathbb{I}_{A \triangle B} = \mathbb{I}_A + \mathbb{I}_B 2 \times \mathbb{I}_A \times \mathbb{I}_B$ et en déduire que $(A \triangle B) \triangle C = A \triangle (B \triangle C)$
- ♦ 9.3 Discuter et résoudre dans $\mathcal{P}(E)$ les équations suivantes, où A et B∈ $\mathcal{P}(E)$.
- a. $A \cup X = B$

b. $A \cap X = B$

Il est conseillé d'utiliser des diagrammes pour se représenter la situation.

9.4 Famille de parties

- a. Ecrire l'ensemble de définition des fonctions suivantes : $f(x) = \sqrt{\cos x + \frac{1}{2}}$ et $g(x) = \ln(\tan x)$
- b. Montrer que $\mathbb{R}=\bigcup_{n\in\mathbb{N}}\Bigl[-n,n\Bigr]$ et $\Bigl\{0\Bigr\}=\bigcap_{n\in\mathbb{N}^*}\Biggl]-\frac{1}{2n},\frac{1}{2n+1}\Biggl[$

② Applications

♥ 9.5 f désigne la fonction sinus, déterminer

$$f(\mathbb{R}) = f^{-1}(\mathbb{R}) = f(\left[0; \frac{\pi}{2}\right]) = f^{-1}(\{1\}) = f^{-1}(\left[-1; 2\right[)] = f^{-1}(f([0; \pi])) = f^{-1}(f([0; \pi/2])) = f(f^{-1}(\mathbb{R}_+))$$

- ♥ 9.6 Soit A et B deux parties de E et $f \in \mathcal{F}(E, F)$.
- 1. Dans cette question $E = F = \mathbb{R}$ et $f(x) = x^2$, déterminer f([0, 2]), f([-3, 2]) et f([-2,1])
- 2. Montrer que:
- **a**. $A \subset B \Rightarrow f(A) \subset f(B)$

b.
$$f(A \cup B) = f(A) \cup f(B)$$

- c. $f(A \cap B) \subset f(A) \cap f(B)$. A-t-on égalité?
- ♥ 9.7 Soit A et B deux parties de F et $f \in \mathcal{F}(E, F)$.
- 1. Dans cette question $E = F = \mathbb{R}$ et $f(x) = \cos x$,

 $\text{déterminer } f^{\text{-1}}(\,[\, \text{-4},\, 0]\,),\, f^{\text{-1}}(\,[\, \text{-1},\, \text{-}\frac{1}{2}\,]\,) \text{ et } f^{\text{-1}}(\,[\, \text{-}\frac{1}{2}\,,\, \frac{1}{2}\,]\,).$

- 2. Montrer que :
- **a.** $A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$

b.
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

c. $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

d.
$$f^{-1}(\bar{A}) = \overline{f^{-1}(A)}$$

- ♦ 9.8 Soit $f:E\rightarrow F$, $A\subset E$ et $B\subset F$.
- **a**. Montrer que $f(f^{-1}(B)) \subset B$ et $A \subset f^{-1}(f(A))$
- **b** Trouver une application f et des parties A et B de \mathbb{R} telles que : $f(f^{-1}(B)) \neq B$ et $f^{-1}(f(A)) \neq A$ On pourra utiliser l'exercice 9.5
- c. Montrer que $\forall B \in \mathcal{P}(F)$, $f(f^{-1}(B)) = B$ ssi f est surjective
- d. Montrer que $\forall A \in \mathcal{P}(E)$, $f^{-1}(f(A)) = A$ ssi f est injective

- **9.9** Soit $f: \mathbb{C} \to \mathbb{C}$ définie par $\forall z \in \mathbb{C}$, $f(z) = z^2 + z + 1$.
- **a**. Déterminer $f(\mathbb{C})$, $f(\mathbb{C}^*)$ et $f(\mathbb{R})$.
- **b**. Déterminer $f^{-1}(\mathbb{C})$, $f^{-1}(\mathbb{C}^*)$ et $f^{-1}(\mathbb{R})$.
- c. f est-elle injective ? Surjective ?
- ♥ 9.10 Pour les applications suivantes vérifier qu'elles sont bien définies puis dire si elles sont injectives, surjectives, bijectives.

a.
$$f:\mathbb{R}\to\mathbb{R}$$
, $x\mapsto \frac{x^2-1}{x^2+1}$

b.
$$g:\mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (2x+3y,x+2y)$

c. u:
$$\mathbb{N}\rightarrow\mathbb{N}$$
, $n\mapsto n+1$

d.
$$v:\mathbb{N}\to\mathbb{N}$$
, $f(n) = n - 1$ si $n\neq 0$ et $f(0) = 0$.

e.
$$\phi : \mathbb{C} \setminus \{i\} \rightarrow \mathbb{C} \setminus \{i\}, \ \phi(z) = \frac{iz + i}{z - i}$$

f.
$$\Phi: \mathcal{C}^1(\mathbb{R},\mathbb{R}) \rightarrow \mathcal{C}(\mathbb{R},\mathbb{R}), \ \Phi(f) = f'$$

- **9.11** Soit $f:\mathbb{N}\to\mathbb{N}$, une application injective. Montrer que si \forall $n\in\mathbb{N}$, $f(n)\leq n$ alors $f=Id_{\mathbb{N}}$.
- 9.12 Soit f: $\begin{cases} \mathbb{N}^2 \to \mathbb{N}^* \\ (p,q) \mapsto 2^p \ (2q+1) \end{cases}$. Montrer que f est surjective.
- 9.13 Soit $f:[0,1] \to [0,1]$ définie par f(x) = 1 x si $s \in [0, \frac{1}{2}[$ et $f(x) = x \frac{1}{2}$ si $x \in [\frac{1}{2}, 1]$. Montrer que f est bijective et préciser f^{-1} .
- 9.14 On note D l'ensemble des nombres complexes de module supérieur à 1.

On considère
$$f: \begin{cases} D \to \mathbb{C} \\ z \mapsto \frac{z^2+1}{2z} \end{cases}.$$

- a. Démontrer que f est surjective. Est-elle injective?
- **b**. Déterminer l'image de U par f.
- ♦ 9.15 Soit E un ensemble et $f:E \to E$ une application telle que fofof = f. Montrer que f injective \Leftrightarrow f bijective.
- ♥ 9.16 Soit $f:E \to F$ une application. Montrer que: $\forall A, B \in \mathcal{P}(E), f(A \cap B) = f(A) \cap f(B) \Leftrightarrow f$ injective
- **9.17** Soit $f: E \rightarrow F$ une application.
- **a**. Soit Y une partie de F. Montrer que $f(f^{-1}(Y)) = Y \cap f(E)$.

Que se passe t'il si f est surjective?

- **b**. Soit A une partie de E et B une partie de F. Montrer que : $f(A \cap f^{-1}(B)) = f(A) \cap B$.
- ♦ 9.18 Soit A et B deux parties fixées d'un ensemble E.

On définit l'application f de $\mathfrak{P}(E)$ dans $\mathfrak{P}(A) \times \mathfrak{P}(B)$ par $\forall X \in \mathfrak{P}(E)$, $f(X) = (X \cap A, X \cap B)$.

- **a**. Prouver que f injective $\Leftrightarrow A \cup B = E$
- **b.** Prouver que f est surjective $\Leftrightarrow A \cap B = \emptyset$

♥-♦ Quizz : Vrai ou faux ?

- ① Toute fonction strictement décroissante sur IR est injective.
- ② Si une application n'est pas injective alors elle est surjective.
- 3 Si une application est bijective alors elle est surjective.
- ④ L'application $f : \mathbb{C} \to \mathbb{C}$ définie par $\forall z \in \mathbb{C}$, $f(z) = z^2$ est surjective.
- \odot Si f et q sont deux applications de E dans E telles que fog = Id_E alors f ou q est bijective.
- © La restriction d'une injection est une injection.
- ② La restriction d'une surjection est une surjection.
- ® Soit $f : \mathbb{R} \to \mathbb{R}$, on peut déterminer $f^{-1}([0,1])$ seulement si f est bijective.