I. Analyse asymptotique

II. Applications linéaires

- Applications linéaires: définition et exemples, règle de calcul.
- L'image d'un SEV par une application linéaire est un SEV, f(E) est un sev de F noté Imf.
- f surjective ssi Imf = F. Si E = Vet(e_1 , e_2 , ..., e_n) alors Im f = Vect($f(e_1)$, $f(e_2)$, ..., $f(e_n)$)
- L'image réciproque d'un SEV par une application linéaire est un SEV Noyau d'une application linéaire, Kerf est un SEV de E, f est injective ssi Kerf = {0E}.
- Opérations sur les applications linéaires : L'ensemble des applications, noté L(E,F) est un K-EV.

Composition d'application linéaire. Kerf \subset Ker gof, Im g \subset Im gof et [gof = 0 \Leftrightarrow Im f \subset Ker g].

• Endomorphismes, isomorphismes, automorphismeS, définition et exemples.

Composée d'endomorphismes, notation fⁿ pour f itérée n fois.

Formule du binôme et de Bernoulli pour des endomorphismes qui commutent.

- Cas particuliers d'endomorphismes de E: homothéties, projections et symétrie
 - ★ Projecteurs: $f \in \mathcal{L}(E)$ est un projecteur lorsque fof = f.

Si p est un projecteur de E alors E = Kerp \oplus Imp et p est le projection sur Imp parallèlement à Kerp.

- \star Symétrie: $f \in \mathcal{L}(E)$ est une involution lorsque fof=Id.
 - Si f est une involution de E alors E = $Ker(f-Id) \oplus Ker(f+Id)$ et f est la symétrie par rapport à Ker(f-Id) parallèlement à Ker(f+Id).
- Image d'une famille génératrice, d'une famille liée, si f est injective alors l'image d'une famille libre dans E est libre dans F.
- Image d'une base \mathcal{B} : f est injective ssi $f(\mathcal{B})$ est libre dans F, f est bijective ssi $f(\mathcal{B})$ est une base de E

Si E a pour base B toute application linéaire u de E dans F est entièrement déterminée par l'image de B

- Espaces vectoriels isomorphes : cas de la dimension finie.
- Rang d'une application linéaire, lemme du rang et théorème du rang. Conséquence : caractérisation des applications injectives, surjectives et bijectives en dimension finie.
- Rang d'une composée
- Hyperplan défini comme le noyau d'une forme linéaire non nulle.

En dimension finie H est un hyperplan ssi dim H = n - 1

Déroulement de la colle:

- \odot Etude locale (en a ou en $\pm \infty$) d'une fonction à l'aide d'un DL de petit ordre.
- ② Une question de cours parmi les suivantes
 - \bullet Donner la définition d'une projecteur de E et monter que si p est un projecteur de E alors E = Kerp \oplus Imp
 - Soit $f \in \mathcal{L}(E,F)$ et \mathcal{B} une base de E. Montrer que f est injective ssi $f(\mathcal{B})$ est libre dans E.
 - Enoncé et preuve du lemme du rang : Soit $f \in \mathcal{L}(E, F)$ et H un supplémentaire de Ker f dans E.

L'application $\phi: \begin{cases} H \to Imf \\ \vec{x} \mapsto \vec{f(x)} \end{cases}$ est un isomorphisme.

3 Exercices d'algèbre linéaire