Chapitre 17 - Comparaison locale de fonctions, développements limités.

Dans ce chapitre, I est un intervalle de R non trivial, a un réel de I ou une borne de I donc éventuellement +∞ ou -∞. K désigne R ou C.

1. Comparaisons locales de fonctions

1.1. Domination et négligeabilité en a :

Déf: Soit f et g définies sur I à valeurs dans K.

• On dit que f est dominée par g au voisinage de a et on note f $= \atop x \to a$ O(g) lorsqu'il existe une

fonction B définie au voisinage de a telle que: $\begin{cases} B & \text{est bornée} \\ f(x) = B(x)g(x) \end{cases}$ sur ce voisinage

• On dit que f est négligeable devant g au voisinage de a et on note f $= \atop x \to a$ o(g) lorsqu'il existe une

fonction ε définie au voisinage de a telle que: $\begin{cases} \varepsilon(x) \xrightarrow{x \to a} 0 \\ f(x) = \varepsilon(x)g(x) \text{ sur ce voisinage} \end{cases}$

★ Autres notations:

f = O(g) peut se remplacer par f = O(g), voire f = O(g) si il n'y a pas d'ambiguïté.

f = o(g) se note aussi f = o(g) voire f = o(g) si il n'y a pas d'ambiguïté ou encore $f \ll g$

 \underline{NB} : En physique, $|X| \ll 1$ signifie que $|X| \rightarrow 0$

★ Dans la pratique: Si g ne s'annule pas au voisinage de a, sauf peut-être en a et si dans ce cas g(a) = f(a) = 0, on utilise les caractérisations suivantes:

$$f = \underset{x \to a}{=} O(g) \Leftrightarrow \frac{f}{g} \text{ est born\'ee au voisinage de a}$$

$$f = \underset{x \to a}{=} o(g) \Leftrightarrow \frac{f}{g} \xrightarrow[x \to a]{} 0$$

$$f = \underset{x \to a}{=} o(g) \Leftrightarrow \frac{f}{g} \xrightarrow{x \to a} 0$$

★ Conséquences immédiates des définitions:

• Si
$$f = o(g)$$
, alors $f = O(g)$

- f = O(1) signifie que f bornée au voisinage de a.
- f $= \underset{x \to a}{\circ}$ o(1) signifie que f tend vers 0 en a.

<u>M Attention</u>: Il ne s'agit pas ici de vraies égalités mais de relation d'appartenance :

$$x = o(e^x)$$
 et $x^2 = o(e^x)$ mais $x \ne x^2$.

<u>Proposition 17.1</u>: Comparaison des fonctions usuelles

Soit α , β et a trois réels.

① Comparaison en $+\infty$:

Si
$$\alpha \in \mathbb{R}$$
 et $\beta > 0$, $(\ln(x))^{\alpha} = o(x^{\beta})$ et $x^{\alpha} = o(e^{\beta x})$

Si
$$\alpha < \beta$$
, $\mathbf{x}^{\alpha} = \mathbf{o}(\mathbf{x}^{\beta})$.

Si
$$\alpha \in \mathbb{R}$$
 et a > 1, et $x^{\beta} = o(a^{x})$

② Comparaison en 0 (se déduit de ① en posant X = 1/x)

Si
$$\alpha \in \mathbb{R}$$
 et $\beta > 0 |\ln(x)|^{\alpha} = o(\frac{1}{x^{\beta}})$

Si
$$\alpha < \beta$$
, $x^{\beta} = o(x^{\alpha})$

③ Comparaison en -∞ (se déduit de ① en posant X = -x)

Si
$$\alpha \in \mathbb{R}$$
 et $\beta > 0$, $e^{\beta x} = o(\frac{1}{|x|^{\alpha}})$

Si
$$\alpha \in \mathbb{R}$$
 et a > 1, $a^{\times} = o(\frac{1}{|x|^{\alpha}})$

Démo: On utilise la caractérisation par la limite du quotient (chapitre 3)

Les résultats du \odot (et par corollaire ceux de \odot et \odot) sont appelés résultats de croissances comparées, on peut retenir que si $0 < si \ 0 < \alpha < \beta$ et 1 < a < b, on a

$$\textit{f born\'ee} \underset{x \to +\infty}{\ll} (\ln(x))^\alpha \underset{x \to +\infty}{\ll} x^\alpha \underset{x \to +\infty}{\ll} x^\beta \underset{x \to +\infty}{\ll} \alpha^x \underset{x \to +\infty}{\ll} b^x$$

En particulier
$$\forall n \in \mathbb{N}, x^{n+1} = o(x^n)$$
 et $x^n = o(x^{n+1})$

 \star Dans la pratique : on utilise la proposition 17.1 pour comparer f(x) et x^{α} ou f(x) et $\frac{1}{x^{\alpha}}$

•
$$f(x) = o(x^{\alpha}) \Leftrightarrow \frac{f(x)}{x^{\alpha}} \xrightarrow{x \to a} 0$$

•
$$f(x) = o(\frac{1}{x^{\alpha}}) \Leftrightarrow x^{\alpha}f(x) \longrightarrow 0$$

Proposition 17.2: Soit f, g, h, k définies sur I à valeurs dans \mathbb{K} .

① Si
$$f = O(g)$$
 et $g = O(h)$ alors $f = O(h)$

② Si
$$f = O(g)$$
 et $g = o(h)$ alors $f = o(h)$

3 Sif
$$= o(g)$$
 et $g = o(h)$ alors $f = o(h)$

<u>Démo</u> : cf chapitre 9

**$$\bigstar$$
 Dans la pratique**: Si $f = o(\lambda x^{\alpha})$ avec $\lambda \neq 0$ alors $f = o(x^{\alpha})$ car $(\lambda x^{\alpha}) = O(x^{\alpha})$

Proposition 17.3 : Compatibilité avec les opérations

① Linéarité: si f = o(h) et si g = o(h) alors
$$\alpha f + \beta g = o(h)$$

② Produit:

• Si
$$f = o(g)$$
 alors $f.h = o(g.h)$

• Si
$$f = o(h)$$
 et $g = o(k)$ alors on a f.g = o(h.k)

③ Substitution : Soit $u:J \rightarrow I$, $b \in J$ ou borne de J.

Si u(x)
$$\xrightarrow[x\to b]{}$$
 a et si $f = o(g)$ alors $fou = o(gou)$

Ces relations restent vraies pour la relation de domination

1.2. Fonctions équivalentes

Déf: Soit f et g définies sur I à valeurs dans K.

On dit que f est équivalente à g au voisinage de a et on note f $_{\stackrel{\sim}{a}}$ g ou f $_{\stackrel{\sim}{x\to a}}$ g lorsqu'il existe une

fonction φ définie au voisinage de a telle que $\begin{cases} \varphi(x) \xrightarrow[x \to a]{} 1 \\ f(x) = \varphi(x)g(x) \text{ sur ce voisinage} \end{cases}.$

- ★ Conséquences immédiates des définitions:
- Soit $\ell \in \mathbb{R}^*$, $f \sim \ell \Leftrightarrow f \xrightarrow{x \to a} \ell$
- f_{\sim} 0 signifie que f est identiquement nulle au voisinage de 0 et pas que f $\xrightarrow[x\to a]{}$ 0.
- \star Dans la pratique : Si g ne s'annule pas au voisinage de a, sauf peut-être en a et si dans ce cas q(a) = f(a) = 0, on utilise les caractérisations suivantes:

$$f_{\stackrel{\sim}{a}}g \Leftrightarrow (f-g) = o(g) \Leftrightarrow f = g + o(g)$$
 et
$$f_{\stackrel{\sim}{a}}g \Leftrightarrow \frac{f}{g} \xrightarrow{x \to a} 1$$

Proposition 17.4: Soit f, g, h trois fonctions de I dans \mathbb{K} .

- ① Réflexivité: f ~ f
- ② Symétrie: Si $f_{\alpha}g$ alors $g_{\alpha}f$
- Transitivité: Si f_{~g} et g_{~h} alors f_{~h}.

♥ Equivalents usuels en 0

$$e^{h} \underset{0}{\sim} 1 \qquad \left(e^{h} - 1\right)_{0}^{\sim} x \qquad \ln(1+h)_{0}^{\sim} h$$

$$(1+h)^{\alpha} - 1_{0}^{\sim} \alpha h \qquad \text{en particulier pour } \alpha = \frac{1}{2}, \text{ on a } \left(\sqrt{1+h} - 1\right)_{0}^{\sim} \frac{1}{2} h$$

$$e^{h} \underset{0}{\sim} 1 \qquad \text{en particulier pour } \alpha = \frac{1}{2}, \text{ on a } \left(\sqrt{1+h} - 1\right)_{0}^{\sim} \frac{1}{2} h$$

$$\cos(h)_{\stackrel{\sim}{0}} 1 \qquad \sin(h)_{\stackrel{\sim}{0}} h \qquad \tan(h)_{\stackrel{\sim}{0}} h \qquad \left(\cos(h) - 1\right)_{\stackrel{\sim}{0}} - \frac{h^2}{2} \tag{*}$$

$$arccos(h)_{\stackrel{\sim}{0}} \frac{\pi}{2}$$
 $arcsin(h)_{\stackrel{\sim}{0}} h$ $arctan(h)_{\stackrel{\sim}{0}} h$
 $ch(h)_{\stackrel{\sim}{0}} 1$ $sh(h)_{\stackrel{\sim}{0}} h$ $th(h)_{\stackrel{\sim}{0}} h$

♥ Equivalents d'une fonction polynomiale : Soit $P(x) = a_n x^n + ... + a_p x^p$ avec $a_n \neq 0$ et $a_p \neq 0$

on a P(x)
$$\underset{\pm\infty}{\sim}$$
 $a_n x^n$ et $P(x) \underset{0}{\sim} a_p x^n$

Proposition 17.5 : Règle de calculs sur les équivalents: Soit f, g, h et k de $I \to \mathbb{K}$ et $\alpha \in \mathbb{R}$

- ① Produit d'équivalents:, Si $f_{\sim}h$ et $g_{\sim}k$ alors $fg_{\sim}hk$
- ② Puissance: Si $f_{\alpha}g$ alors, sous réserve d'existence, $f(x)^{\alpha}_{\alpha}g(x)^{\alpha}$
- $\ \$ Quotient d'équivalents: Si f $_{\alpha}$ h et g_{α} k alors, sous réserve d'existence f/g $_{\alpha}$ h/k
- $\ \, \mbox{\fontfamily Substitution:} \ \, \mbox{\fontfamily Soit } \mbox{\fontfamily $u:J{\to}I$, $b{\in}J$ ou borne de I.}$

Si
$$u(x) \xrightarrow[x \to b]{} a$$
 et si $f \underset{a}{\sim} g$ alors fou $\underset{b}{\sim} gou$

Démo: On calcule la limite du quotient

MATTENTION PAS DE SOMME (ni de différence, même une constante...)

Comment faire si on doit donner un équivalent d'une somme?

- On cherche le terme prépondérant pour écrire S(x) = g(x) + o(g(x)).
- On cherche à factoriser la somme pour utiliser les règles de calcul

M Attention: Sauf exception, la composition à gauche n'est pas compatible avec les relations de comparaison : $u(x) \sim v(x)$ n'implique pas $f(u(x)) \sim f(v(x))$

Proposition 17.6: Soit f, g, h, k quatre fonctions de I dans K.

Si
$$k(x) \le g(x) \le h(x)$$
 au voisinage de a et $h_{\alpha}f$ et $k_{\alpha}f$ alors $g_{\alpha}f$

- * Méthode classique: Les équivalents usuels sont en 0, on pourra s'y ramener en posant:
- x = a + h pour la recherche d'un équivalent en a réel
- $x = \frac{1}{h}$ pour la recherche d'un équivalent en a $\pm \infty$

1.3 Propriétés conservées par équivalents

Proposition 17.7:

- $@Si f \sim g \ et \ si \ lim \ g = \ell \quad alors \ lim \ f = \ell$

Exemples d'utilisation traité en classe:

Calcul de limite, existence d'un prolongement par continuité

Préciser la nature de la branche infinie de la courbe représentative de f ainsi que sa position relative au voisinage de $+\infty$.

2. Développement limité d'ordre n en a.

2.1. Présentation et définition:

Déf: Soit $f: I \rightarrow \mathbb{K}$ avec $0 \in I$ ou 0 est une borne de I.

On dit que f admet un développement limité d'ordre n en 0, noté DLn(0), lorsqu'il existe un

polynôme P =
$$\sum_{k=0}^{n} a_k X^k$$
 de $\mathbb{R}_n[X]$ tel que : $f(x) - \sum_{k=0}^{n} a_k x^k = o(x^n)$.

Le DL_n(0) de f est :
$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$
Partie régulière

Reste d'ordre n

Remarques:

- L'ordre du DL est donné par l'exposant de x dans le reste et pas par le degré de la partie
- Toute fonction polynômiale f de degré p admet pour tout n≥p, un DL d'ordre n en 0 de partie régulière f(x) et de reste 0.

Exemple 1: $f:x \to \frac{1}{1-x}$ admet un DL à tout ordre en 0 de partie régulière $1+x+x^2+..+x^n$. ou encore: $\forall n \in \mathbb{N}, \boxed{\frac{1}{1-x} = 1+x+x^2+..+x^n + o \ (x^n)}$

ou encore:
$$\forall n \in \mathbb{N}, \frac{1}{1-x} = 1+x+x^2+..+x^n+o(x^n)$$

Proposition 17.8: Propriétés des DL_n(0):

- ① Si f admet un $DL_n(0)$, sa partie régulière est unique et on peut donc parler **du** $DL_n(0)$ de f.
- ② Si f admet un $DL_n(0)$ tel que $f(x) = P(x) + o(x^n)$ alors, pour tout $\lambda \in \mathbb{R}$ et tout $p \in \mathbb{N}$, on peut substituer λx^p à x pour obtenir: $f(\lambda x^p) = P(\lambda x^p) + o(x^{np})$
- $\[\]$ \underline{Si} f est paire (resp. impaire) et admet un $DL_n(0)$ <u>alors</u> la partie régulière est paire (resp. impaire).
- \searrow En substituant x à x puis x^2 à x dans l'exemple 1, on obtient :

$$\frac{1}{1+x^{0}} = 1-x+x^{2}+\cdots(-1)^{n} x^{n} + o(x^{n})$$

$$\frac{1}{1+x^{2}} = 1-x^{2}+x^{4}+\cdots+(-1)^{n} x^{2n} + o(x^{2n})$$

Déf: Soit $f: I \rightarrow \mathbb{K}$ et a un réel de I ou une borne de I.

On dit que f admet un développement limité d'ordre n en a, noté DLn(a), lorsqu'il existe un

$$polyn \hat{o} me \ P = \sum_{k=0}^n a_k^{} X^k \quad de \ \mathbb{R}_n[X] \ tel \ que: \quad f(x) - \sum_{k=0}^n a_k^{} (x-\alpha)^k \underset{x \to a}{=} o((x-\alpha)^n).$$

Le DL_n(a) de f est:
$$f(x) = \sum_{x \to a}^{n} a_k (x-a)^k + o((x-a)^n)$$

Reste d'ordre n

★ Remarques:

- Par convention, on écrit les termes du DL_n dans l'ordre croissant des puissances de x de sorte que chaque terme est négligeable devant ceux écrits à sa gauche au voisinage de a.
- On ne développe pas les $(x a)^k$ dans l'écriture du $DL_n(a)$
- \star Dans la pratique: f admet un $DL_n(a)$ ssi $g:h \to f(a+h)$ admet un $DL_n(0)$. On se ramènera systématiquement en 0 par le changement de variable x=a+h

Proposition 17.9 : Propriétés des DL_n(a):

- ① Si f admet un $DL_n(a)$, sa partie régulière est unique et on peut donc parler **du** $DL_n(a)$ de f.
- ② Si f admet un $DL_n(a)$, alors pour tout entier $p \le n$, f admet un $DL_p(a)$ que l'on obtient en tronquant le $DL_n(a)$ à l'ordre p, c'est à dire

Si
$$f(x) = \sum_{\alpha=0}^{n} a_k (x-\alpha)^k + o((x-\alpha)^n)$$
 alors $\forall p \in \mathbb{N}, p \le n, f(x) = \sum_{\alpha=0}^{p} a_k (x-\alpha)^k + o((x-\alpha)^n)$

2.2. Liens avec la dérivation

Théorème 17.1: Soit f définie sur I, sauf peut-être en a.

- ① f admet un $DL_0(a)$ <u>si et seulement si</u> f admet une limite finie en a.
- Donc si f est définie en a et admet un $DL_0(a)$ alors f est continue en a
- si f n'est pas définie en a et admet un $DL_0(a)$ alors f est prolongeable par continuité en a Dans les deux cas, on a: f(x)=f(a)+o(1)
- ② Soit f définie en a, f admet un $DL_1(a)$ <u>si et seulement si</u> f, ou son prolongement par continuité en a, est dérivable en a et dans ce cas, on a: f(x)=f(a)+f'(a)(x-a)+o(x-a)
- \mathcal{M} Attention: Si une fonction admet un $DL_n(a)$ avec $n \ge 2$, elle n'est pas nécessairement n fois dérivable en a

Théorème 17.2: formule de Taylor-Young

<u>Si f est de classe C^n sur I alors f possède un DL_n en tout réel a de I donné par:</u>

$$\begin{split} f(x) &= \sum_{x \to a}^n \frac{f^{(k)}(a)}{k!} (x - a)^k + o((x - a)^n) \\ &= \sum_{x \to a}^n f(a) + f'(a)(x - a) + \frac{f''(a)}{2} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + o((x - a)^n) \\ \text{ou encore, en posant } x = a + h : \ f(a + h) &= \sum_{x \to 0}^n \frac{f^{(k)}(a)}{k!} h^k + o(h^n) \end{split}$$

Applications: DLn des fonctions usuelles en 0

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^{n} + o(x^{n}) \text{ avec } \alpha \in \mathbb{R}$$

Il faut Savoir retrouver rapidement les DL3(0)

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{3}{16}x^3 + o(x^3)$$
 et $\frac{1}{\sqrt{1+x}} = = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3)$

<u>Remarque</u>: dans la pratique, on utilise peu cette formule pour obtenir le DL_n , on préférera les opérations, on l'utilise plutôt pour justifier l'existence d'un $DL_n(a)$ pour une fonction de classe C^n

2.3. Opérations sur les développements limités

Les résultats de cette partie sont énoncés pour les $DL_n(0)$ mais ils s'étendent aisément aux $DL_n(a)$ en posant x=a+h

Proposition 17.10: Linéarité et produit

Si f et q admettent un $DL_n(0)$ ayant pour partie régulière respectives P et Q alors

- ① $\alpha f + \beta g$ admet un $DL_n(0)$ de partie régulière $\alpha P + \beta Q$.
- 2 fg admet un DLn(0) de partie régulière R obtenue en tronquant au degré n le produit PQ.

Applications:

$$ch(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$sh(x) = x + \frac{x^{3}}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

Proposition 17.11: Composition

Soit f et g définies au voisinage de 0 et admettant des $DL_n(0)$ de partie régulière P et Q. Si $\lim_{x\to 0} f(x) = 0$ alors (gof) admet un $DL_n(0)$ de partie régulière R obtenue en tronquant au degré n le polynôme QoP.

Corollaire: Inverse, quotient

Si f admet un $DL_n(0)$ et est telle que $\lim_{x\to 0} f(x) = a \neq 0$ alors $\frac{1}{f}$ admet un $DL_n(0)$, obtenu en écrivant $\frac{1}{f(x)} = \frac{1}{a(1\pm g(x))} = \frac{1}{a} \times \frac{1}{1\pm g(x)}$ avec $\lim_{x\to 0} g(x) = 0$

Dans la pratique : On obtient le $DL_n(0)$ de $\frac{1}{1\pm g(x)}$ en composant le $DL_n(0)$ de $\frac{1}{1\pm h}$ avec celui de

g, ce qui est possible car
$$\lim_{x\to 0} g(x) = 0$$
.

Applications:
$$\tan(x) = \sin(x) \times \frac{1}{\cos(x)} = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$$

Proposition 17.12 Intégration

Si f est continue sur I contenant 0, et admet un $DL_n(0)$ alors toute primitive F de f sur I admet un $DL_{n+1}(0)$ obtenue en <u>intégrant terme</u> à terme le $DL_n(0)$ de f <u>sans oublier de rajouter le terme constant</u> F(0). C'est à dire:

Si
$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$
 alors $F(x) = F(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} + o(x^{n+1})$

Applications:

$$\ln(1+x) = \ln(1) + x - \frac{x^{2}}{2} + \dots + (-1)^{n} \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$\ln(1-x) = \ln(1) - x - \frac{x^{2}}{2} - \dots - \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$\arctan(x) = \arctan(0) + x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

et également les DLn de arccos et arcsin, (ordre 3 ou 4)

 \mathcal{N} On ne dérive à priori pas les DL mais \underline{si} f admet un $DL_n(0)$ et \underline{si} on sait que f' admet un $DL_{n-1}(0)$ alors on peut l'obtenir en dérivant terme à terme le $DL_n(0)$ de f. C'est le cas quand f est de classe \mathcal{C}^n et à fortiori de classe \mathcal{C}^∞ , votre professeur de physique pourra donc le faire...

2.4 Applications des développements limités

① Recherche d'équivalents et calculs de limite

$$\begin{split} &\text{Proposition17.13} \,:\, \text{Si f admet un DL}_n(a) \text{ de la forme} \\ &f(x) \mathop{=}\limits_{x \to a} \sum_{k=p}^n a_k \; (x-a)^k \, + o((x-a)^n \;) = a_p \; (x-a)^p \, + \cdots a_n \; (x-a)^n \, + o((x-a)^n \;) \; \text{avec } a_p \neq 0. \end{split}$$

alors
$$f(x) \underset{x \to a}{\sim} a_p (x-a)^p$$

2 Etude locale de f en a

Proposition 17.14: Si f admet un $DL_p(a)$ de la forme

$$f(x) = a_0 + a_1 (x - a) + a_p (x - a)^p + o((x - a)^p) \text{ avec } p \ge 2 \text{ et } a_p \ne 0.$$

- alors f est continue en a ou prolongeable par continuité en a avec $f(a) = a_0$
 - f ou f prolongée est dérivable en a avec $f'(a) = a_1$
 - la position relative de C_f et de sa tangente en (a, f(a)) au voisinage de a, est donnée par le signe de $a_P(x - a)^p$

③ Extremum local

Proposition 17.15: Soit f admettant un $DL_p(a)$ de la forme

$$f(x) = f(a) + a_p (x-a)^p + o((x-a)^p) \text{ avec } p \ge 2 \text{ et } a_p \ne 0.$$

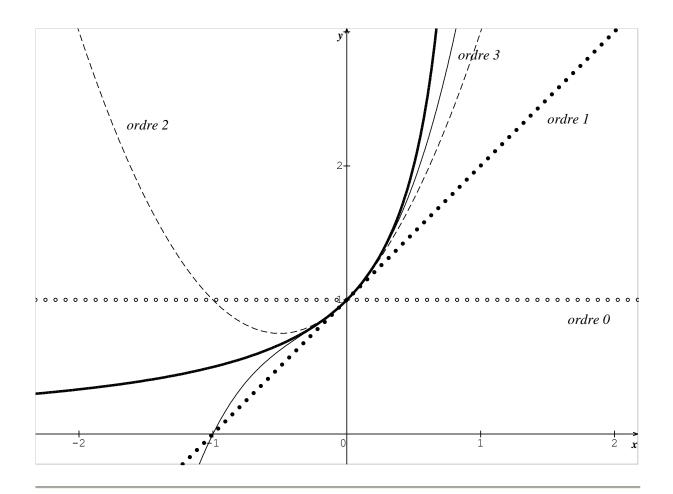
Si p est pair, f admet un extremum local en a.

Si p est impair, (a, f(a)) est un point d'inflexion de C_f

- \triangle Applications: On considère f de classe C^2 sur [a, b] et $x_0 \in]a, b[$.
- a. On suppose que $f(x_0)$ est un extremum local de f, donner le $DL_2(x_0)$ de f.
- b. Montrer que si f'(x_0) = 0 et si f''(x_0) \neq 0 alors f admet un extremum local en x_0 .

$$\begin{split} &\frac{1}{1-x} = 1+x+x^2+...+x^n + o(x^n) \sum_{x\to 0} \sum_{k=0}^n x^k + o(x^n) \\ &\frac{1}{1+x} = 1-x+x^2+...(-1)^n \ x^n + o(x^n) = \sum_{k=0}^n (-1)^k \ x^k + o(x^n) \\ &e^x = 1+\frac{x}{1!} + \frac{x^2}{2!} + ... + \frac{x^n}{n!} + o(x^n) = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) \\ &ch(x) = 1+\frac{x^2}{2!} + \frac{x^4}{4!} + ... + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) = \sum_{k=0}^n \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) \\ &sh(x) = x+\frac{x^3}{3!} + ... + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) = \sum_{k=0}^n \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \\ &cos(x) = 1-\frac{x^2}{2!} + \frac{x^4}{4!} + ... + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) \\ &sin(x) = x-\frac{x^3}{3!} + \frac{x^5}{5!} + ... + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \\ &tan(x) = x+\frac{x^3}{3} + \frac{2x^5}{15} + o(x^5) \\ &(1+x)^\alpha = 1+\frac{\alpha}{1!} + \frac{\alpha(\alpha-1)}{2!} x^2 + ... + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n + o(x^n) \\ &= 1+\sum_{k=1}^n \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k + o(x^n) \\ &\sqrt{1+x} = 1+\frac{1}{2}x - \frac{1}{8}x^2 + \frac{3}{16}x^3 + o(x^3) \text{ et } \frac{1}{\sqrt{1+x}} = \frac{1}{0}1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3) \\ &ln(1+x) = ln(1) + x - \frac{x^2}{2} + ... + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1}) \\ &ln(1-x) = ln(1) - x - \frac{x^2}{2} - ... - \frac{x^{n+1}}{n+1} + o(x^{n+1}) \\ &arctan(x) = \underbrace{arctan(0)}_{0} + x - \frac{x^3}{3} + \frac{x^5}{5} + ... + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \end{aligned}$$

Annexes:



<u>Graphique 2</u>: DL en 0 de $f: x \mapsto \cos x$

