Exercices - Chapitre 16: Polynômes

♦ Corrigé- ♥ A savoir refaire

Définition, degré

- ♦ 16.1 On pose $H_0 = 1$ et $\forall \in \mathbb{N}$, $H_{n+1} = H_n' 2XH_n$. Déterminer les polynômes H_1 , H_2 , H_3 puis le degré et le coefficient dominant de H_n .
- **▶ 16.2** Justifier que arctan est de classe C^{∞} sur \mathbb{R} et montrer que $\forall n \in \mathbb{N}^{*}$, il existe un polynôme

 T_n de $\mathbb{R}[X]$ tel que $\arctan^{(n)}(x) = \frac{T_n(x)}{(1+x^2)^n}$. Préciser le degré de T_n et son coefficient dominant.

- 16.3 Soit n∈IN, déterminer le degré du polynôme P = $(X^2 + 1)^n 2X^{2n} + (X^2 1)^n$.
- 16.4 Déterminer le degré puis les coefficients du polynôme $P_n = \prod_{k=0}^n (1 + X^{2^k})$.
- 16.5 Résoudre dans $\mathbb{C}[X]$ l'équation $P(X^2) = (X^2 + 1)P(X)$

Algèbre linéaire et polynômes

- **▶ 16.6** Montrer que, pour tout $n \in \mathbb{N}$, $(X^k(1-X)^{n-k})_{0 \le k \le n}$ est une famille libre dans $\mathbb{R}[X]$.
- 16.7 Soit $n \in \mathbb{N}$, $n \ge 2$ et $E = \mathbb{R}_n[X]$. On considère le polynôme $A = X^2 + 1$

On pose $F = \{ P \in E | A \text{ divise } P \}.$

- a. Montrer que F est un SEV de E.
- b. Montrer que $E = F \oplus \mathbb{R}_1[X]$
- c. Donner une base de F.
- 16.8 Soit $E = \mathbb{R}_5[X]$, on définit

 $F = \{P \in E, P(1) = P'(0) = P(-1) = 0\} \text{ et } G = Vect(X^2, X(X+1), (X+1)^2).$

- a. Montrer que F et G sont des SEV de E et en donner une base.
- b. Déterminer F∩G. Que peut-on en déduire.
- **16.9**. On note E l'espace vectoriel $\mathbb{K}_n[X]$.
- a. Justifier que $\mathcal{F} = (1, (X-1), (X-1)^2, ..., (X-1)^n)$ est une base de E.

On pose n = 3, donner les coordonnées dans cette base de X^3-2X^2+X-1 .

- b. Soit $P \in E$, quelles sont les coordonnées de Q = P(X+1) dans la base canonique de E ?
- **16.10** On note E l'espace vectoriel $\mathbb{K}_n[X]$.

On pose $P_0 = 2$, $P_1 = X$ et pour tout $k \in [0, n-2]$, $P_{k+2} = XP_{k+1} - P_k$

Montrer que la famille $(P_k)_{0 \le k \le n}$ est une base de E

- **16.11** Soient $n \in \mathbb{N} \setminus \{0, 1, 2\}$ et $F = \{P \in \mathbb{R}_n[X], P(0) = P'(0) = P''(0)\}$.
- a) Montrer que F est un espace vectoriel et préciser sa dimension
- b) Déterminer un supplémentaire de F dans $\mathbb{R}_n[X]$.
- **16.12** Soit P = X^3 $2X^2$ + 3X 1. Donner les coordonnées de P dans les bases suivantes de $\mathbb{R}_3[X]$: $B_1 = (1, X, X^2, X^3)$, $B_2 = (1, X+1, (X+1)^2, (X+1)^3)$ et $B_3 = (X^3, X^2(X-1), X(X-1)^2, (X-1)^3)$

Division euclidienne

- 16.13 Effectuer les divisions euclidiennes suivantes:
- a. $A = X^5 + X^3 + 2X^2 + X + 1$ par $B = X^3 + X^2 + 1$
- b. $A = X^4 + aX^3 + bX + c$ par $B = X^2 + 1$ avec a, b, $c \in \mathbb{R}$ et $a \neq 0$.

- 16.14 Déterminer le reste des divisions euclidiennes suivantes dans $\mathbb{R}[X]$:
- a. $A = X^n$ par $B = X^2 3X + 2$
- b. $A = X^n$ par $B = X(X 1)^2$ c. $A = X^{2n} + 1$ par $B = X^2 + 1$
- 16.15 Soit $n \in \mathbb{N}^*$, déterminer le reste de la division euclidienne de $A = (X 3)^{2n} + (X 2)^n 2$ par (X-3) puis par $(X-2)^3$ dans $\mathbb{R}[X]$.
- ♦ 16.16 Soit a et b deux complexes et $P \in \mathbb{C}[X]$, déterminer le reste dans la division euclidienne de P par (X - a)(X - b).
- **▶ 16.17** Une application aux matrices: On considère $A = \begin{pmatrix} 8 & -1 & 2 \\ 7 & 0 & 2 \\ -18 & 3 & -4 \end{pmatrix}$.
- a. Vérifier que $A^3 4A^2 + 5A 2I_3 = 0_3$.
- b. Déterminer le reste dans la division de X^n par $P = X^3 4X^2 + 5X 2$.
- c. Calculer A^n pour $n \in \mathbb{N}$.

Racines, factorisation

▼ 16.18 Factoriser dans C[X] et dans R[X], les polynômes

$$X^7 - 1$$
, $X^8 - 1$, $X^3 + 1$, $X^4 + X^2 + 1$ et $X^6 + 1$

- 16.19 Factoriser $P = X^8 + X^4 + 1$ dans $\mathbb{R}[X]$ de deux méthodes différentes : A l'aide des racines de P puis sans les racines de P
- **▼ 16.20** On donne $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$
- a. Montrer que $j = e^{j\frac{2\pi}{3}}$ est racine de P et donner son ordre de multiplicité.
- b. Que déduire de la parité de P?
- c. Décomposer P dans IR[X].
- **16.21** Factoriser dans $\mathbb{C}[X]$ puis $\mathbb{R}[X]$
- a. $X^4 9X^3 + 30X^2 44X + 24$
- 2 est une racine multiple de P
- b. $X^6 X^5 + 3X^4 2X^3 + 3X^2 X + 1$
- c. X^{2n} $2X^{n}$ cos($n\theta$) + 1 avec $n \ge 1$ et $\theta \in \mathbb{R}$.
- 16.22 Montrer que j = $e^{i\frac{2\pi}{3}}$ est racine de P(X) = $X^4 + X^3 + 2X^2 + X + 1$.

En déduire la factorisation de P dans IR.

- ♦ 16.23 Trouver une CNS sur l'entier n pour que X²ⁿ + Xⁿ + 1 soit divisible par X² + X + 1.
- ♥ 16.24 Un classique : Rappeler la factorisation de X^n 1 dans $\mathbb{C}[X]$.

En déduire la factorisation de P = $\sum_{k=0}^{n-1} X^k$ dans $\mathbb{C}[X]$,

puis donner une expression simple du produit $\prod_{n=1}^{n-1} \sin(\frac{k\pi}{n})$.

Dérivation, racines multiples.

- ♦ 16.25 Résoudre dans IR[X] l'équation P'² = 4P
- **16.26** Montrer que P = nX^{n+2} $(n+2)X^{n+1}$ + (n+2)X n est divisible par $(X-1)^3$.
- 16.27 Montrer que pour tout $n \in \mathbb{N}$, $n \ge 1$, $P = \sum_{k=0}^{n} \frac{X^k}{k!}$ n'a que des racines simples dans \mathbb{C} .
- ♦ 16.28 Déterminer les polynômes P divisibles par P' dans K[X].
- 16.29 Déterminer les polynômes de $\mathbb{C}[X]$ tels que $(X^2+1)P'' 6P = 0$

- 16.30 Soit P un polynôme de $\mathbb{R}[X]$ de degré $n \ge 2$.
- a. Peut-on dire que si α est racine de P d'ordre de multiplicité m, alors α est racine de P' d'ordre de multiplicité (m 1) ?
- b. Montrer que si P est scindé alors P' est aussi scindé.
- ♥ 16.31 Soit P un polynôme de degré n, n \ge 1, à coefficients réels possédant n racines réelles distinctes.
- a. Montrer que P' possède (n 1) racines réelles.
- b. En déduire que les racines de $Q = P^2 + 1$ sont toutes simples dans \mathbb{C} .

Relations entre coefficients et racines

16.32 Soit
$$n \ge 2$$
 et $P_n = (X + i)^n - (X - i)^n$

Déterminer les racines de P et en déduire $\alpha_n = \sum_{k=1}^{n-1} \cot an(k\pi/n)$ et $\beta_n = \prod_{k=1}^{n-1} \cot an(k\pi/n)$

16.33 Soit
$$P = X^3 - 7X^2 + 5X + 2$$
.

- a. Montrer que P admet trois racines réelles x_1 , x_2 et x_3 telles que $x_1 < x_2 < x_3$
- b. Calculer la valeur de $\sigma_1 = x_1 + x_2 + x_3$, $\sigma_2 = x_1x_2 + x_2x_3 + x_1x_3$ et $\sigma = x_1x_2x_3$.
- c. En déduire les valeurs de $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}$, $x_1^2 + x_2^2 + x_3^2$ et $x_1^3 + x_2^3 + x_3^3$.
- d. On note S_p la somme $x_1^p + x_2^p + x_3^p$ où $p \in \mathbb{N}^*$ et $Q = X^p \times P$.

En utilisant que x_1 , x_2 et x_3 sont racines de Q, écrire une relation de récurrence entre S_{p+3} , S_{p+2} , S_{p+1} et S_p .

▶ 16.34 Résoudre dans
$$\mathbb{C}^2$$
:
$$\begin{cases} z+w=3i-4\\ zw=-12i \end{cases}$$

Famille de polynômes: Remplacer Hermite par Tchebychev

- 16.35 Polynômes de Hermite: Soit f la fonction définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = \exp(-\frac{x^2}{2})$.
- 1. Montrer que f est de classe C^{∞} et que $\forall n \in \mathbb{N}$, il existe $H_n \in \mathbb{R}[X]$, $\forall x \in \mathbb{R}$, $f^{(n)}(x) = (-1)^n H_n(x) f(x)$.
- 2. Justifier que ∀n∈N, H_n est de degré n et est unitaire
- 3. Justifier que f est solution de l'équation différentielle y' + xy = 0 puis en déduire que: (1) $H_{n+1} - XH_n + nH_{n-1} = 0$ (2) $H'_{n-1} - xH'_{n-1} + nH_{n-1} = 0$
- 4. Montrer que ∀n ≥ 2, Hn est scindé que toutes ses racines sont simples et que les racines de Hn. séparent les racines de Hn.

C'est à dire qu'entre deux racines successives de H_n on trouve une unique racine de H_{n-1}

16.36 Polynômes interpolateurs de Lagrange

On note E l'espace vectoriel $\mathbb{R}_n[X]$ et on considère (n + 1) réels $a_0 < a_1 < ... < a_n$.

 $\text{a. Montrer, } \forall i \in [\![0,n]\!], \text{ il existe un unique polynôme } L_i \text{ de E tel que } L_i \text{ (a_j)} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$

On pourra commencer par traiter le cas où n =2

- b. Montrer que la famille $(L_0, L_1, ..., L_n)$ est une base de E et donner les coordonnées de $P \in E$ dans cette base.
- c. On donne A_0 , A_1 ,..., A_n (n+1) points distincts du plan, déterminer une fonction polynômiale f de degré au plus n dont la courbe représentative passe pas les points A_0 , A_1 ,..., A_n .
- d. Expliciter f pour n = 2 et $A_0(-1, 1)$, $A_1(1,2)$ et $A_3(2, -3)$