1. Le principe de récurrence et ses variantes :

Soit $\mathcal{P}(n)$ une propriété sur IN ou une partie de IN et $n_0 \in \mathbb{N}$.

• Principe de récurrence:

Si
$$\left\{ \begin{split} & \mathscr{G}(\mathsf{n}_0) \text{ est vraie} \\ & \text{Pour tout } \mathsf{n} \geq \mathsf{n}_0 \text{ ,} \\ & \left(\mathscr{G}(\mathsf{n}) \Rightarrow \mathscr{G}(\mathsf{n}+1) \right) \end{split} \right.$$

Vocabulaire:

- \star Vérifier $\mathcal{P}(n_0)$ constitue l'initialisation du raisonnement par récurrence.
- **★** Une propriété $\mathcal{P}(n)$ vérifiant $\forall n \geq n_0$, $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$ est dite **héréditaire**.

<u>Attention</u>: Une propriété peut être héréditaire et par ailleurs, fausse! L'étape d'initialisation est donc indispensable pour conclure.

★ Symboliquement, le principe s'écrit:

$$[\mathscr{G}(n_0) \text{ et } (\forall n \in \mathbb{N}, n \geq n_0, \mathscr{G}(n) \Rightarrow \mathscr{G}(n+1)] \Rightarrow [\forall n \in \mathbb{N}, n \geq n_0, \mathscr{G}(n)].$$

• Récurrence double:

Si
$$\begin{cases} \mathcal{P}(n_0) \text{ et } \mathcal{P}(n_0+1) \text{ sont vraies} \\ \text{Pour tout } n \geq n_0, \big(\mathcal{P}(n) \text{ et } \mathcal{P}(n+1) \Rightarrow \mathcal{P}(n+2) \big) \end{cases} \text{ alors } \mathcal{P}(n) \text{ est vraie pour tout } n \geq n_0.$$

<u>Remarque</u>: Ce type de récurrence s'utilise lorsque la démonstration de l'hérédité nécessite l'utilisation des deux rangs précédents.

 \geq Preuve: On montre par récurrence simple que la propriété Q(n): P(n) et P(n+1) est vraie pour tout $n \geq n_0$.

• Récurrence forte:

$$\mathsf{Si} \begin{cases} \mathfrak{T}(\mathsf{n}_{\scriptscriptstyle{0}} \;) \;\; \mathsf{est} \; \mathsf{vraie} \\ \mathsf{Pour} \;\; \mathsf{tout} \; \mathsf{n} \geq \mathsf{n}_{\scriptscriptstyle{0}} \;, \left(\mathfrak{T}(\mathsf{n}_{\scriptscriptstyle{0}} \;), \, \mathfrak{T}(\mathsf{n}_{\scriptscriptstyle{0}} \; + 1), \ldots, \mathfrak{T}(\mathsf{n}) \;\; \Rightarrow \mathfrak{T}(\mathsf{n} + 1) \right) \end{cases}$$

alors $\mathcal{P}(n)$ est vraie pour tout $n \ge n_0$.

Remarque: Ce type de récurrence s'utilise lorsque la démonstration de l'hérédité nécessite l'utilisation de certains rangs compris entre n_0 et n ou même de tous.

 \ge Preuve : On montre par récurrence simple que la propriété Q(n) : $\forall k \in [1, n]$, P(k) est vraie pour tout $n \ge n_0$.

• Récurrence finie:

Remarque: ce type de récurrence s'utilise lorsque la propriété à démontrer n'a plus de sens à partir du rang p + 1.

Exercices d'application

① Soit u la suite définie par u_0 = 2, u_1 = 3 et $\forall n \in \mathbb{N}$, u_{n+2} = $3u_{n+1}$ - $2u_n$. Montrer que, $\forall n \in \mathbb{N}$, u_n = 2^n + 1.

 $\text{@ Soit } (u_n)_{n\in \mathbb{N}} \text{ une suite r\'eelle telle que } u_0 = 1 \text{ et } \forall n\in \mathbb{N}, \ u_{n+1} \ \leq \ \sum_{k=0}^n u_k \ .$

Montrer que: $\forall n \in \mathbb{N}$, $u_n \leq 2^n$.

③ On donne les deux propriétés suivantes où $n \in \mathbb{N}^*$:

$$P(n): \ \sum_{k=0}^n kk! = (n+1)! - 1 \ \text{et } Q(n): \ \sum_{k=0}^n kk! = (n+1)!$$

- a. Montrer que ces deux propriétés sont héréditaires pour tout n≥1.
- b. Laquelle des deux est vraie, pour tout $n \in \mathbb{N}^*$?
- Montrer que si une trousse contient n stylos alors ils sont tous de la même couleur.

Réponse: Soit P(n): Si une trousse contient n stylos alors il sont tous de la même couleur avec $n \in \mathbb{N}^*$

- \star P(1) est trivialement vraie.
- ★ Soit $n \in \mathbb{N}$, $n \ge 1$, tel que P(n) est vraie. Considérons une trousse contenant (n+1) stylos. On enlève un stylo, la trousse contient alors n stylos tous de la même couleur, par exemple rouge, par hypothèse de récurrence. Remettons le stylo et enlevons en un autre. les n stylos restants sont encore de la même couleur, toujours rouge. Ainsi les (n+1) stylos sont de la même couleur et P(n+1) est vraie
- \bigstar D'après le principe de récurrence, $\forall n \geq 1,$ si une trousse contient n stylos alors ils sont tous de la même couleur.

Qu'en pensez-vous?

2. Quelques éléments d'arithmétique :

2.1 Division euclidienne

Théorème et définition: Pour couple (a, b) de $\mathbb{Z} \times \mathbb{N}^*$, il existe un unique couple (q, r) de $\mathbb{Z} \times \mathbb{N}$, vérifiant a = bq + r et $0 \le r < b$. On dit que q est le quotient et r le reste dans la division euclidienne de a par b.

M Attention: La condition 0 ≤ r < b est indispensable.

Le reste ne peut donc prendre que b valeurs dans [0, b-1]

Exercice 1: Ecrire une fonction Python de paramètre (a, b) retournant q et r sans utiliser de division, ni de multiplication.

Proposition 1: Soit $b \in \mathbb{N}$ $b \ge 2$, pour tout $r \in [0, b-1]$, on pose $A_r = \{bk + r, k \in \mathbb{N}\}$. La famille $(A_r)_{r \in [0, b-1]}$ est une partition de \mathbb{N} .

Exemples:

- Pour b = 2, les parties $A_0 = \{2k \in \mathbb{N}\}$ et $A_1 = \{2k + 1, k \in \mathbb{N}\}$ forment une partition de \mathbb{N}
- Pour b = 3, les parties A_0 = {3k∈IN}, A_1 = {3k + 1, k∈IN} et A_2 = {3k + 1, k∈IN} forment une partition de IN

Dans la pratique: On peut faire une disjonction des cas en raisonnant modulo $b \ge 2$.

> Exercice 2 : Calculer $S_n = \sum_{k=0}^{3n} \left\lfloor \frac{2k}{3} \right\rfloor$

2.2. Multiples et diviseurs

Déf: Soient a et b deux entiers relatifs.

• On dit que b divise a lorsqu'on peut écrire a = kb avec $k \in \mathbb{Z}$.

Symboliquement $b \mid a \Leftrightarrow \exists k \in \mathbb{N} \text{ tel que } a = kb$

• On dit que a est un multiple de b lorsque b divise a.

Remarque: L'égalité a = kb donne deux diviseurs de a: b et k.

Vocabulaire: Lorsque b|a, b est un diviseur de a et a est un multiple de b.

Proposition 2: Propriétés de la relation divise: a, b et c sont des entiers relatifs

- 1) ala
- ② si b|a et a|b alors a = b ou a = -b
- 3 si a|b et si b|c alors a|c
- 4 si d|a et d|b alors $\forall (u, v) \in \mathbb{Z}^2$, d|(au + bv)

Notations

- \star On note a $\mathbb Z$ l'ensemble des multiples de a. $n \in a\mathbb Z \Leftrightarrow \exists k \in \mathbb Z$, n = ka Les entiers naturels pairs sont les multiples de 2 soit $2\mathbb Z$.
- On notera D(a) l'ensemble des diviseurs de a. D(a) contient toujours au moins 1 et a. D(a) est une partie finie de $\mathbb Z$ car majorée par a et minorée par -a

Proposition 3: Soit $(a, b) \in \mathbb{N} \times \mathbb{N}^*$, b divise a si et seulement si le reste dans la division de a par b est nul.

Exercice 3: Montrer que $\forall n \in \mathbb{N}$, $(n^3 - n)$ est divisible par 3 On proposera au moins deux méthodes différentes.

2.3 PGCD et PPCM

Def: Soit deux entiers naturels a et b non nuls.

- ① L'ensemble des diviseurs positifs commun à a et à b est une partie non vide et majorée de \mathbb{N} qui possède un plus grand élément appelé plus grand commun diviseur de a et b et noté PGCD(a,b) ou $a \land b$.
- ② L'ensemble des multiples strictement positifs commun à a et à b est une partie non vide de IN qui possède un plus petit élément appelé plus petit commun multiple de a et b et noté PPCM(a,b) ou $a \lor b$.

Remarque : On peut étendre ces notions aux cas suivants :

- PGCD(a, 0) = a et PPCM(a, 0) =0
- Si a et b sont dans \mathbb{Z} , PGCD(a, b) = PGCD(|a|, |b|) et PPCM(a, b) = PPCM(|a|, |b|)

```
Proposition 4 : Soit a et b deux entiers naturels non nuls, PGCD(a, b) = a \Leftrightarrow a|b et PPCM(a,b) = a \Leftrightarrow b|a
```

- > Exercice 4 : Soit n∈N.
 - a. Montrer que le PGCD de 2n + 4 et 3n + 3 ne peut être que 1, 2, 3 ou 6.
 - b. Déterminer n tel que $(2n + 4) \wedge (3n + 3) = 3$

Lemme d'Euclide : Soit a et b deux entiers naturels non nuls, et r le reste dans la division euclidienne de a par b. On a PGCD(a, b) = PGCD(b, r)

Application: algorithme d'Euclide pour l'obtention du PGCD de a et de b

On définit une suite d'entiers naturels (r_n) de la façon suivante.

```
r_0 = a et r_1 = b.
```

Pour tout $k \ge 1$, si $r_k > 0$ alors r_{k+1} est le reste dans la division de r_{k-1} par r_k . si $r_k = 0$ on s'arrête.

Le dernier reste non nul est alors le PGCD de a et de b

> Exercice 5: Compléter cette fonction Python mettant en œuvre cet algorithme.

```
def euclide(a,b):
r = ......
while r > 0:
    r =
    a = ......
    b = ......
return ......
```

Vocabulaire:

- On dit que a et b sont premiers entre eux lorsque PGCD(a, b) = a \land b = 1.
- Une fraction est dite irréductible lorsque son numérateur et son dénominateur sont premiers entre eux.

2.4 Nombres premiers

Déf: Un entier naturel p est <u>premier</u> s'il admet exactement deux diviseurs positifs. En notant \mathbb{P} l'ensemble des nombres premiers, on a : $p \in \mathbb{P} \Leftrightarrow D(p) = \{1, p\}$

Conséquence : 1 n'est pas premier et 2 est le seul premier pair.

Propriété 6: Tout entier $n \ge 2$ admet au moins un diviseur premier p avec $p \le \sqrt{n}$ si n n'est pas premier.

> Exercice 6:

a. Démontrer par récurrence forte que tout entier n ≥ 2 admet au moins un diviseur

premier p.

Dans l'hérédité, on pourra distinguer deux cas suivant que n + 1 est ou non premier.

- **b**. Soit n un entier non premier, en écrivant n = a.b avec $a \ge 2$ et $b \ge 2$, montrer que n admet un diviseur premier p vérifiant $p \le \sqrt{n}$
- c. Ecrire une fonction Python qui renvoie True si n est premier et False sinon.

Proposition 7: L'ensemble des nombres premiers \mathbb{P} est infini

> Exercice 7

Démontrer par l'absurde la proposition 7

> Exercice 8

- 1. Soit a et b deux entiers naturels. Montrer que si a et b ont pour reste 1 dans la division par 4, alors il en est de même pour ab.
- 2. Soit p un nombre premier. Quelle peut être son reste dans la division par 4?
- 3. Montrer par l'absurde qu'il existe une infinité de nombres premiers dont le reste dans la division par 4 est 3 *On pourra s'inspirer fortement de la démonstration précédente.*

Théorème fondamental de l'arithmétique : Tout entier $n \ge 2$ s'écrit de manière unique à l'ordre des facteurs près comme produits de nombres premiers

Exemple:
$$60 = 2 \times 30 = 2 \times 2 \times 15 = 2 \times 2 \times 3 \times 5 = 2^2 \times 3 \times 5$$

- > Exercice 9 Le petit théorème de Fermat : Soit p un nombre premier.
 - a. Prouver que $\forall k \in [1, p-1], \binom{p}{k}$ est divisible par p.
 - b. Montrer par récurrence sur n que \forall n \in \mathbb{N}^* , n^p n est divisible par p.
 - c. Déterminer tous les entiers $p \in \mathbb{P}$ tels que p divise $2^p + 1$.
- Exercice 10 : Déterminer par combien de zéros se termine l'entier N = 2025!

Application au calcul du PGCD et du PPCM

- En notant $\alpha_p(n)$ l'exposant du nombre premier p dans la décomposition primaire de n avec $\alpha_p(n)$ > 0 si p figure dans la décomposition et $\alpha_p(n)$ = 0 sinon, on peut écrire $n = \prod_{n \in \mathbb{P}} p^{\alpha_p(n)}$.
- Le PGCD de a et de b est le produit des facteurs premiers communs aux deux décompositions, affectés du plus petit exposant rencontré.

Ou encore si
$$a = \prod_{p \in \mathbb{P}} p^{\alpha_p(a)}$$
 et $b = \prod_{p \in \mathbb{P}} p^{\alpha_p(b)}$ alors $a \wedge b = \prod_{p \in \mathbb{P}} p^{min(\alpha_p(a),\alpha_p(b))}$

Deux nombres entiers sont premiers entre eux si et seulement si ils n'ont aucun facteur premier en commun dans leur décomposition.

• Le PPCM de a et de b est le produit des facteurs premiers présents dans chacune des deux décompositions, affectés du plus grand exposant rencontré.

Ou encore si
$$a = \prod_{p \in \mathbb{P}} p^{\alpha_p(a)}$$
 et $b = \prod_{p \in \mathbb{P}} p^{\alpha_p(b)}$ alors $a \lor b = \prod_{p \in \mathbb{P}} p^{max(\alpha_p(a), \alpha_p(b))}$

Proposition 8:
$$PPCM(a, b) \times PGCD(a, b) = a.b$$