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Chapitre 14 - Espace vectoriel - résumé de cours

Dans tout ce chapitre K désigne le corps R ou C.

1. Complément : notion de groupe

Def: Soit E un ensemble, on appelle loi de composition interne sur E toute application de E? dans
E. Si la loi est notée *, I'application correspondante est (x, y)—>xxy.

e+etxdansRouC
® + dC(nS @Knlp(K) 61' X dC(nS @r{,n(K)

e La composition, notée o, dans |'ensemble $(E, E) = EE.

e -dans N
e La multiplication d'une fonction par un réel.

Def: Soit G un ensemble muni d'une loi de composition interne notée *.

On dit que (G, %) est un groupe lorsque * vérifie les propriétés suivantes :
(1) * est associative

(2) * admet un élément neutre

(3) Tout élément de G est inversible pour *

Si de plus * est commutative alors G est un groupe commutatif ou abélien.

e Exemples de groupes additifs: (Z, +) (R, +) (C, +)

* Exemples de groupes multiplicatifs: (R, x) (C”, x)

e (N, +) (R, x), (Z", x) he sont pas des groupes.

¢ (8(R,R), +) est un groupe mais pas (5(R,R), o)

e Les matrices carrées d'ordre n inversible forment un groupe pour le produit matriciel appelé
groupe linéaire et noté GLA(K).

Notations:

Si la loi est notée +, I'élément neutre est noté O et le symétrique de x est noté - x
Si la loi est notée X, I'élément neutre est noté 1g et le symétrique de x est noté 1/x ou x..

2. Notion d'espace vectoriel et exemples de référence:

2.1 Définition et vocabulaire:

Def: Soit E un ensemble muni de deux lois
une loi interne (x, y)eE? > x + yeE
une loi externe (A, x)e KxE — A.xecE

On dit que (E,+, .) est un K-espace vectoriel (K-EV.) si et seulement si

¢ (E, +) est un groupe abélien

e La loi externe vérifie, Vx, yeE et i, pek,
@) 1x=x

(i) L(x+y)=Ax+ALy

(iii) (A +p)x=Ax+py

(iv)  A(ux) = (p).x
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* Les éléments de E sont appelé vecteurs et peuvent €tre noté x ou x , I'élément neutre de E

est alors noté Og ou Ok .
* Les éléments de K sont appelés les scalaires.

Proposition 14.1: Régles de calcul dans les K -EV.
vxeE, 0.x = Og et Vie K, A.0g = O
vxeE, Ve K, Ax=< A =0o0ux =0

vxek, (-1).x = -x opposé de x pour la loi +
V(x,y)eE?, V(h, m)eK?, A.(x - y)=A.x - Ly et (A - n).X = L.X - u.X

Def : Soit (xi)i<i<n une famille finie vecteurs de E et (Ai) 1<isn une famille finie de scalaires, le

n
vecteur A X, +--+LA X, = Zki X, est un vecteur de E appelé combinaison linéaire des
i=1

vecteurs (Xi)i<i<n

Notons que O est colinéaire a tous les vecteur de E car VxeE, 0.x = Og

2.2 Exemples de référence:

* Les ensembles des vecteurs du plan et de |I'espace munis de I'addition vectorielle et de la
multiplication par un réel sont des R-EV.

* RR? et R® sont des R-EV avec les lois suivantes:

(X, )+ (X, y)=(x+x,y+y)et Ax,y) = (Ax, Ly), le vecteur nul est (0, 0)
(x,y,2)+(X,y,Z)=(x+x,y+y,z+z") et MA(Xx, Yy, 2) = (Ax, Ly, AZ), le vecteur nul est (O, O, O)
* K est un K-E.V.

* CestunR-E.V. et un C-EV Remarque: Tout C-E.V. est un R-E.V.
* Soit X un ensemble non vide, et K -E un espace vectoriel (X, E) muni des opérations usuelles

sur les applications est un K -EV.

Pour X = IN, et E =K, on obtient que |'ensembles des suites a valeurs dans K = IR ou C, muni des
opérations usuelles est un K -EV.

Pour X = T intervalle de R et E = K , on obtient que les fonctions définies sur I a valeurs dans ou
R ou €, munies des opérations usuelles forment un K -EV.

* Les matrices nxp a coefficients dans K munies de |'addition matricielle et de la multiplication

par un scalaire forment un K -EV.

2.3 Espace vectoriel produit:

Proposition 14.2: Soit E et F deux K-E.V., I'ensemble ExF = {(x, y), xeE, yeF} muni des lois:
vx, X'eE, vy, y'eF, (x y)+(x',y') = (x+x',y +y') et vxeE, VyeF, vieK, A(x, y) = (Ax, Ay)

est un K -espace vectoriel appelé espace vectoriel produit.
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EixE2x...xE, est encore un K-E.V.

C'est donc le cas de R3 et plus généralement, pour n > 2, R"= RxRx.. xR et de C" avec les
opérations suivantes :

(x1, X2,..., Xn) + (Yl, Y2,..., Yn) = (x1+ Y1, X2+ Y2,... Xn+ Yn) et A(x1,Xz,....%n) = (AX1, AX2,...,AXn)
Le vecteur nul est (0, O, ..., 0)

3. Sous-espace vectoriel:

3.1 Définition, caractérisations, exemples:

Def: Soit E un K-E.V. et F une partie de E. F est un sous-espace vectoriel (SEV) de E ssi

e F est non vide
o F est stable par la loi +
o F est stable par la loi .

® F est un S.E.V. de E < OgeF et V(x, y)eF?, V(r, n)eK?, (L.x + wy)eF

ou F contient le vecteur nul et est stable par combinaison linéaire.
@ Festun S.E.V. de E < OeeF et V(x, y)eF?, VreK, (L.x + y)eF

Exemples:
* Soit E une K-E.V., les parties { O} et E sont des SEV. de E, dits triviaux.

* Considérons I un intervalle de R et E = (I R)., les ensembles suivants sont des SEV de E :
C°(I,R) ensemble des fonctions continues sur I

D(I,R) ensemble des fonctions dérivables sur I.

* E = Mn(K), I'espace vectoriel des matrices carrées d'ordre n, contient les S.E.V. suivants :

Ensemble des matrices diagonales : Dn(K)

Ensemble des matrices triangulaires supérieures (resp. inférieures) : 7,"(K) et 7, (K).

= ¥ Exercice résolu : méthode 1

® Montrer que F = {(x, y, z)eR3, 2x - 3y + z = 0} est un SEV de R®

@ Montrer que G = {(2t ,t, 3t), tcR} est un SEV de R®

® Montrer que les solutions de y" - 3y’ + 2y = O forment un SEV de A(R,R)

lois + et . , est lui-méme un K -EV.

Dans les problemes, pour montrer qu'un ensemble est un EV. on montrera de préférence qu'il est
un S.E.V. d'un espace vectoriel de référence.

3.2 Sous-espace vectoriel engendré par n vecteurs de E

Proposition 14.3 et def: Soit E un K-E.V. et A = { x4, X2,...,Xn } une partie finie de E.

i=1
appelé le sous-espace vectoriel engendré par A.
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Vocabulaire :

* Si A = {u} alors Vect(A) = {k.u, keK} est la droite vectorielle engendrée par u.
* Si A={u,v}avecu et vnon colinéaires, alors Vect(A) = { iu+pv, (A,n)eK?} est le plan
vectoriel engendré par {u,v}.

= ¥ Exercice résolu : méthode 2

® Montrer que F = {(x, y, z)eR3, 2x - 3y + z = 0} est un SEV de R®

@ Montrer que G = {(2t ,t, 3t), TR} est un SEV de R®

® Montrer que les solutions de y" - 3y' + 2y = O forment un SEV de A(R,R)

3.3 Intersection de sous-espaces:

Proposition 14.4: Soit E un K-E.V. Si F et 6 sont deux sous-espaces vectoriels de E alors FNG

est encore un sous-espace vectoriel de E.

mFi est encore un SEV de E.

i=1

3.4 Somme de deux sous-espaces:

En général, FUG n'est pas un S.E.V. de E, on introduit donc la notion suivante :

Def: Soit F et 6 deux SEV d'un K-E.V. noté E, on appelle somme de F et de G la partie de E
définie par F+G = { x +y, xeF,yeG }.

Proposition 14.5 : F + G est un SEV de E et c'est le plus petit SEV contenant FUG, au sens de
I'inclusion.

Def: Soit F et 6 deux S.E.V.d'un K-E.V. E.

e On dit que F et G sont en somme directe lorsque tout élément de F + G s'écrit de maniére
unique comme somme d'un élément de F et d'un élément de G.

Dans ce cas, la somme est hotée F ® G ou lieude F + 6.

* On dit que F et G sont supplémentaires dans E lorsqu'ils sont en somme directe et que
F®G=E,cestadire: VxeE, 3lxieF, 3lx2e6, X = X1+ X2

Proposition 14.6: Soit F et G deux S.E.V. d'un K-E.V. E.

@ F et G sont en somme directe ssi F NG = {Og}
@ F et G sont supplémentaires ssi[E=F + G et F NG = {Og} ]

* Montrer que E = F+G et FnG = {Og}.
e Montrer que tout élément de E s'écrit de maniére comme somme d'un élément de F et de 6

Exemples de S.E.V. supplémentaires a connditre:

® Soit E = §(R,R), P est |'ensemble des fonctions paires et Z I'ensemble des fonctions impaires,
onaE=P® Z

@ € =R @ iR d'aprés |'unicité de |'écriture d'un complexe sous forme algébrique.

® Les matrices symétriques et antisymétriques forment deux S.E.V. supplémentaires dans
Mn(K) ou encore Muy(K) = An(K) ® S(K)
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4. Familles de vecteurs

Dans ce paragraphe, E est un K-espace vectoriel et g = (e, ez,..., en) est une famille de n

vecteurs de E, nelN". On appelle sous-famille de § toute famille extraite de & (on enléve des
vecteurs en conservant |'ordre de §) et sur famille de § toute famille dont § est une sous-famille
(on rajoute des vecteurs en conservant |'ordre de §).

4.1 Familles génératrices:

Def: Soit F un SEV de E et § = (e1, ez,..., en) une famille de F.
On dit que J est une famille génératrice de F lorsque F = Vect(§) = Vect (ey, ez,..., en)

— n
Vie[l, n], eicF et Vx eF,3(M, Az, ..., k)K", x =01, e, +L,e, +..+ L e = Z?»i e,
i=1

Proposition 14.7: Soit § = (e1, ez,..., en) est une famille génératrice de F.

® On obtient une autre famille génératrice de F en permutant les éléments d'une famille
génératrice.

@ Si § est une famille génératrice alors toute sur - famille de § obtenue en ajoutant des
vecteurs de F est encore génératrice de F.

® On ne peut pas enlever un vecteur d'une famille génératrice sans risquer de perdre le
caractere générateur sauf s'il est une combinaison linéaire des autres

4.2 Familles libres, familles liées:

Def: La famille § = (e1, ez,..., en) est libre dans E lorsqu'on a I'implication suivante:

n —
VM, Ae,..., k)eK", D A e, =0=%, =4, =..=2%, =0.

i=1
n
ou encore I'équation Zki e, =0, admet (0, 0...., 0) comme unique solution dans K",
i=1
Une famille qui n'est pas libre est dite liée.

indépendants et si § est liée, on dit que les vecteurs ey, ez,...et e, sont linéairement dépendants.

Proposition 14.8: La famille § = (e1, ez,..., en) de E est liée ssi un des vecteurs de J est une
combinaison linéaire des autres vecteurs de §.

* Toute famille contenant deux vecteurs colinéaires est liée.

* Toute famille contenant Oe ou une répétition est liée.

* Toute sous-famille d'une famille libre est encore libre.

* Toute sur-famille d'une famille lice est liée.

* Toute famille obtenue par permutation des éléments d'une famille libre est libre
* Si x # Og alors (x) est libre dans E.

* (x,y) est libre dans E ssi x et y ne sont pas colinéaires.

Proposition 14.9: Soit L = {ey, ez,..., ey} une famille libre de E et v un vecteur de E.
§ = {e1,....ep, v} est libre ssi v ¢Vect(L).

liberté sauf si ce vecteur n'est pas combinaison linéaire des autres.
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4.3 Bases d'un sous-espace vectoriel:

Def: Soit F un SEV de E. On dit que 3 = (ey, ez,..., en) est une base de F lorsque 3 est a la fois
libre dans E et génératrice de F.

base en permutant les vecteurs de 3.

Exemples d connditre.
((1,0), (0,1)) est la base canonique de K?.

((1,0,..,0),(0,1,0,..,0),..,(0,0, ..,1) est la base canonique de K".

(Ei j1ien, 1cjsp est la base canonique de M p(K).

Théoréme 14.1 et définition: Soit 3 = (e1, ez,..., en) une famille de F.

% est une base de F si et seulement si tout vecteur x de F s'écrit de maniére unique comme
combinaison linéaire des éléments de % ou encore,

n
vxeF, 310u, hz,..., M)eK™, x = D 0 e,
i=1
Les scalaires i sont les coordonnées ou composantes de x dans %.

vecteurs de la base quand on donne les coordonnées.

Corollaire: Soit F de base 31 et & de base %, deux sous-espaces vectoriels de E.
% = (B1, B2) obtenue en concaténant les bases de F et de 6 est une base de E ssi E = F®6.

5. Espace vectoriel de dimension finie

5.1 Définition.

Def: On dit qu'un K-espace vectoriel non nul est de dimension finie lorsqu'il admet une famille

génératrice finie. Dans le cas contraire, il est de dimension infinie.

5.2 Existence de base en dimension finie

Théoréme 14.2 dit de la base extraite : Soit E non nul et de dimension finie. De toute famille
génératrice finie G, on peut extraire une base de E.

x= Preuve : On prouve l'algorithme suivant :

B« G

Tant que & est liée faire
On cherche un vecteur v de 3 combinaison linéaire des autres.
D« D\ {v}

Afficher @

Corollaire: Tout K - espace vectoriel non nul de dimension finie admet une base.

Théoréme 14.3 dit de la base incompléte Soit E non nul et de dimension finie. Toute famille
libre £ peut se compléter pour donner une base de E.
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= Preuve : On prouve l'algorithme suivant : Soit G = (ey, ez...., en) une famille génératrice de E.

B« L

Pour k allant de 1 & n faire
Si exgVect(®) alors
P« B A{ex}
Afficher 3

* En enlevant des vecteurs a une famille génératrice jusqu'd avoir une famille libre.
* En complétant une famille libre avec des vecteurs qui ne sont pas combinaison linéaire des
précédents, jusqu'd avoir une famille génératrice.

5.3 Dimension d'un espace vectoriel.

Lemme de la dimension: Soit E un K-ev non nul de dimension finie. Si E admet une base de

cardinal p alors toute famille d'au moins (p + 1) vecteurs de E est lice.

Démonstration : Il suffit de le montrer pour p + 1 vecteurs
On note & = (ey, ..., ep) une base de E.
On considere une famille § = (uy, ..., up, Up+1) et des scalaires Ay, ..., Ap, o1 tels que

Ay, +"'+7vp+1up+1 =0;.
Onapour tout kentreletp+1,uk=a, e, +-+a,e,.

En injectant dans |'égalité précédente et en identifiant on obtient un systéme homogeéne

>‘101,1 +7‘202,1 +"'+7‘p+1ap+1,1 =0

klalyp+ka ++ A =0

272, p+lap+1,p

de p équations a (p + 1) inconnues. Ce systeme a une infinité de solutions donc la famille est liée.

et les familles génératrices sont de cardinal au moins p.

Théoréme 14.4 dit de la dimension : Soit E non nul et de dimension finie, si % = (ey,..., en) et
%' = (e',..., €'p) sont deux bases de E alors n = p.

Def : Soit E un EV de dimension finie.

La dimension de E est I'entier naturel noté dim E défini par :
edimE =0siE = {0g}

e dim E est le cardinal de toutes les bases de E sinon.

* dim K = 1 mais, attention, en tant que R-ev, dim C = 2.
* Un K-ev de dim 1 est une droite vectorielle, un K-ev de dim 2 est un plan vectoriel.
* dim K" = n en tant que K-EV

* dim Mn,p = np
* Si E et E' sont de dimension finie alors ExE' aussi et dim ExE' = dimE + dimE'

Proposition 14.10: Caractérisation des bases: Soit E un K-ev de dimension n.

® Toute famille libre est de cardinal au plus n et si § est libre et de cardinal n alors § est une
base de E.

@ Toute famille génératrice est de cardinal au moins n et si § est génératrice et de cardinal n
alors § est une base de E.
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6. Sous-espaces vectoriels en dimension finie

6.1 Dimension d'un sous-espace vectoriel.

Def : On dit qu'un sous-espace vectoriel F de E est de dimension finie si I'espace vectoriel F est
de dimension finie.

Exercice résolu : 14.17

¢ Les ensembles de solutions des EDL homogenes sont des EV de dimension 1 pour les EDL1 et de
dimension 2 pour les EDL2
e L'ensemble des suites qui vérifient une SRL2 est un EV de dimension 2.

Proposition 14.11: Soit E de dimension finie.
® Tout SEV F de E est aussi de dimension finie et dim F < dim E
@ Si F est un SEV de E tel que dim F = dim E alors F = E.

6.2 Supplémentaire en dimension finie

Proposition 14.12: Existence d'un supplémentaire en dimension finie
Soit E de dimension finie, tout SEV F de E admet un supplémentaire G dans E et
dim E = dim F + dim G.

* Le SEV engendré par des vecteurs qui complétent une base de F pour obtenir une base de E
est un supplémentaire de F dans E.

* Il n'y a pas unicité du supplémentaire: Soit P un plan R?, toute droite vectorielle D non incluse
dans P est supplémentaire & P dans IR®. Faire une figure

Théoréme 14.5: Formule de Grassmann
Soit E de dimension finie et F et 6 deux SEV de E.
dim (F + 6) = dim F + dim G - dim (FNG)

Corollaire: Caractérisation des supplémentaires en dimension finie.
Soit E de dimension finie et F et G deux SEV de E.
OF®6=E<E=F+G6etdimE=dimF +dimG

@QF®6=E < FnG = {0} et dimE = dimF + dimG

6.3. Rang d'une famille de vecteur

Def: Soit § une famille de vecteurs de E. Lorsque le sous -espace F engendré par § est de
dimension finie, sa dimension est le rang de la famille § noté rg(s).
C'est-a-dire, sous réserve d'existence, rg(§) = dim Vect(s).

de §.
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Proposition 14.13 : Soit § = (e1, ez,...,ep) dans E de dimension n
O rg(§) < net [rg(F) = n < J est génératrice de E].

@ rg(§) < p et [rg(§) = p < & est libre dans E].

® rg($) =n=p < §est une base de E

@r‘g(é})=0c>vae&f,u:0

* On supprime un vecteur nul ou un vecteur figurant plusieurs fois (en laissant au moins un
exemplaire de ce vecteur !).

* On permute les vecteurs de la famille.

* On multiplie un vecteur par un scalaire non nul.

* On ajoute A un vecteur une combinaison linéaire des autres vecteurs.

* On enléve un vecteur combinaison linéaire des autres vecteurs.
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Annexe : Quelques représentations

@ Droite vectorielle :

®@ Plan vectoriel :

® Somme directe : Ei et E2 sont en somme directe :
vveEr + Bz, 3 Ix1€Bq, 3 Ix2€B2, v = x1 + Xa.

Remarque : Icion a aussi Ei, Ez2 et E3 en somme directe.

@ Sous-espaces supplémentaires : F®6 = E
vweE, 3 lueF, 3 lve, w=u+v

PCsI2
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