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Chapitre 14 – Espace vectoriel - résumé de cours 

 

Dans tout ce chapitre  désigne le corps  ou . 

1. Complément : notion de groupe 

Def: Soit E un ensemble, on appelle loi de composition interne sur E toute application de E² dans 

E. Si la loi est notée , l'application correspondante est (x, y)→xy. 

Exemples: 

• + et  dans  ou  

• + dans Mn,p() et  dans Mn() 

• La composition, notée , dans l'ensemble F(E, E) = EE. 

Contre-exemples: 

• - dans   

• La multiplication d'une fonction par un réel. 

Def: Soit G un ensemble muni d'une loi de composition interne notée . 

On dit que (G, ) est un groupe lorsque  vérifie les propriétés suivantes : 

(1)  est associative 

(2)  admet un élément neutre 

(3) Tout élément de G est inversible pour  

Si de plus  est commutative alors G est un groupe commutatif ou abélien. 

Exemples et contre-exemples 

• Exemples de groupes additifs: (✓, +) (, +) (, +) 

• Exemples de groupes multiplicatifs: (*, ) (*, ) 

• ( , +) (, ), (✓*, ) ne sont pas des groupes. 

• (F(,), +) est un groupe mais pas (F(,), ) 

• Les matrices carrées d’ordre n inversible forment un groupe pour le produit matriciel appelé 

groupe linéaire et noté GLn(). 

Notations: 

Si la loi est notée +, l'élément neutre est noté 0E et le symétrique de x est noté - x 

Si la loi est notée  , l'élément neutre est noté 1E et le symétrique de x est noté 1/x ou x-1. 

 

2. Notion d’espace vectoriel et exemples de référence: 

2.1 Définition et vocabulaire: 

Def: Soit E un ensemble muni de deux lois 

une loi interne (x, y)E²  x + yE 

une loi externe (, x)xE  .xE 

On dit que (E,+, .) est un -espace vectoriel (-EV.) si et seulement si 

• (E, +) est un groupe abélien 

• La loi externe vérifie, x, yE et , , 

(i) 1.x = x 

(ii) .(x + y) = .x + .y 

(iii) ( + ).x = .x + .y 

(iv) (.x) = ().x 
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Vocabulaire: Soit (E,+, .) un -EV. 

 Les éléments de E sont appelé vecteurs et peuvent être noté x ou x


, l'élément neutre de E 

est alors noté 0E ou E0


. 

 Les éléments de  sont appelés les scalaires. 

Proposition 14.1: Règles de calcul dans les  -EV. 

xE, 0.x = 0E  et , .0E = 0E 

xE, , .x=   = 0 ou x = 0E 

xE, (-1).x = -x opposé de x pour la loi + 

(x, y)E², (, )², .(x - y)=.x - .y et ( - ).x = .x - .x 

 

Def : Soit (xi)1in une famille finie vecteurs de E et (i) 1in une famille finie de scalaires, le 

vecteur 
=

 + +  = 
n

1 1 n n i i

i 1

x x x  est un vecteur de E appelé combinaison linéaire des 

vecteurs (xi)1in 

Cas particulier : Deux vecteurs x et y sont colinéaires lorsqu'il existe  tel que = y x . 

Notons que 0E est colinéaire à tous les vecteur de E car xE, 0.x = 0E 

2.2 Exemples de référence: 

 Les ensembles des vecteurs du plan et de l'espace munis de l’addition vectorielle et de la 

multiplication par un réel sont des -EV. 

  ² et 3 sont des -EV avec les lois suivantes: 

(x, y) + (x’, y’) = (x + x’, y + y’) et (x, y) = (x, y), le vecteur nul est (0, 0) 

(x, y, z) + (x’, y’, z’) = (x + x’, y + y, z + z’’) et (x, y, z) = (x, y, z), le vecteur nul est (0, 0, 0) 

  est un -E.V.  

  est un -E.V. et un -EV  Remarque: Tout -E.V. est un -E.V. 

 Soit X un ensemble non vide, et  -E un espace vectoriel F(X, E) muni des opérations usuelles 

sur les applications est un  -EV. 

Pour X =  , et E =, on obtient que l’ensembles des suites à valeurs dans  =  ou , muni des 

opérations usuelles est un  -EV. 

Pour X = I intervalle de  et E =  , on obtient que les fonctions définies sur I à valeurs dans ou 

 ou , munies des opérations usuelles forment un  -EV. 

 Les matrices np à coefficients dans  munies de l’addition matricielle et de la multiplication 

par un scalaire forment un  -EV. 

2.3 Espace vectoriel produit: 

Proposition 14.2: Soit E et F  deux -E.V., l'ensemble ExF = {(x, y), xE, yF} muni des lois: 

x, x'E, y, y'F, (x ,y) + (x', y') = (x + x', y + y') et xE, yF, , (x, y) = (x, y) 

est un  -espace vectoriel appelé espace vectoriel produit. 

Remarque: On retrouve que ² = x est un -EV mais aussi que 2 est un -EV. 
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Extension: Par récurrence immédiate, si (Ei)1in est une famille de -E.V. alors le produit 

E1xE2x...xEn est encore un -E.V. 

C'est donc le cas de 3 et plus généralement, pour n ≥ 2, n = xx...x et de n avec les 

opérations suivantes : 

(x1, x2,..., xn) + (y1, y2,..., yn) = (x1 + y1, x2 + y2,...,xn + yn) et  (x1, x2,...,xn) = (x1, x2,...,xn) 

Le vecteur nul est (0, 0, ..., 0) 

 

3. Sous-espace vectoriel: 

3.1 Définition, caractérisations, exemples: 

Def: Soit E un -E.V. et F une partie de E. F est un sous-espace vectoriel (SEV) de E ssi 

        • F est non vide 

        • F est stable par la loi + 

        • F est stable par la loi . 

Dans la pratique, on utilise les caractérisations suivantes:  

 F est un S.E.V. de E  0EF et (x, y)F², (, )², (.x + .y)F 

ou F contient le vecteur nul et est stable par combinaison linéaire. 

 F est un S.E.V. de E  0EF et (x, y)F², , (.x + y)F 

NB: si 0EF alors F n'est pas un SEV. 

Exemples: 

 Soit E une -E.V., les parties { 0E } et E sont des SEV. de E, dits triviaux. 

 Considérons I un intervalle de  et E = (I,)., les ensembles suivants sont des SEV de E : 

0(I,) ensemble des fonctions continues sur I 

(I,) ensemble des fonctions dérivables sur I. 

 E = n(), l'espace vectoriel des matrices carrées d’ordre n, contient les S.E.V. suivants : 

Ensemble des matrices diagonales : Dn() 

Ensemble des matrices triangulaires supérieures (resp. inférieures) : n
+() et n

-(). 

  Exercice résolu : méthode 1 

 Montrer que F = {(x, y, z)3, 2x - 3y + z = 0} est un SEV de 3 

 Montrer que G = {(2t ,t , 3t), t} est un SEV de 3 

 Montrer que les solutions de y’’ – 3y’ + 2y = 0 forment un SEV de (,) 

Dans la pratique: Si F est un sous-espace vectoriel d'un -EV E, alors F muni des restrictions des 

lois + et . , est lui-même un  -EV. 

Dans les problèmes, pour montrer qu'un ensemble est un EV. on montrera de préférence qu'il est 

un S.E.V. d'un espace vectoriel de référence. 

3.2 Sous-espace vectoriel engendré par n vecteurs de E 

Proposition 14.3 et def: Soit E un -E.V. et A = { x1, x2,...,xn } une partie finie de E. 

La partie de E définie par Vect(A) = { 
n

i i

i 1

x
=

 , (1,...,n) n } est un sous-espace vectoriel de E 

appelé le sous-espace vectoriel engendré par A. 

Remarque : Vect (A) est le plus petit SEV contenant A, au sens de l’inclusion 
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Vocabulaire : 

 Si A = {u} alors Vect(A) = {k.u, k} est la droite vectorielle engendrée par u. 

 Si A = { u, v } avec u et v non colinéaires, alors Vect(A) = { u v +  , (,)²} est le plan 

vectoriel engendré par {u,v}. 

  Exercice résolu : méthode 2 

 Montrer que F = {(x, y, z)3, 2x - 3y + z = 0} est un SEV de 3 

 Montrer que G = {(2t ,t , 3t), t} est un SEV de 3 

 Montrer que les solutions de y’’ – 3y’ + 2y = 0 forment un SEV de (,) 

3.3 Intersection de sous-espaces: 

Proposition 14.4: Soit E un -E.V. Si F et G sont deux sous-espaces vectoriels de E alors FG 

est encore un sous-espace vectoriel de E. 

Extension: Par récurrence immédiate, si (Fi)1in est une famille de S.E.V. de E, leur intersection 
n

i

i 1

F
=

  est encore un SEV de E. 

3.4 Somme de deux sous-espaces: 

En général, FG n’est pas un S.E.V. de E, on introduit donc la notion suivante : 

Def: Soit F et G deux SEV d'un –E.V. noté E, on appelle somme de F et de G la partie de E 

définie par F+G = { x + y, xF, yG }. 

 

Proposition 14.5 : F + G est un SEV de E et c’est le plus petit SEV contenant FG, au sens de 

l’inclusion. 

Dans la pratique : Soit xE, xF + G si et seulement si xFF, xGG, x = xF + xG 

Def: Soit F et G deux S.E.V. d'un -E.V. E. 

• On dit que F et G sont en somme directe lorsque tout élément de F + G s’écrit de manière 

unique comme somme d’un élément de F et d’un élément de G. 

Dans ce cas, la somme est notée F  G ou lieu de F + G. 

• On dit que F et G sont supplémentaires dans E lorsqu'ils sont en somme directe et que 

F  G = E, c’est à dire : xE, !x1F, !x2G, x = x1 + x2 

 

Proposition 14.6: Soit F et G deux S.E.V. d'un -E.V. E. 

 F et G sont en somme directe ssi F G = {0E} 

 F et G sont supplémentaires ssi [ E = F + G et F G = {0E} ] 

Dans la pratique : Pour montrer que F et G sont supplémentaires, on a deux méthodes possibles : 

• Montrer que E = F+G et FG = {0E}. 

• Montrer que tout élément de E s’écrit de manière comme  somme d’un élément de F et de G 

Exemples de S.E.V. supplémentaires à connaître: 

 Soit E = F(,),  est l'ensemble des fonctions paires et  l'ensemble des fonctions impaires, 

on a E =   . 

  =   i d'après l'unicité de l'écriture d'un complexe sous forme algébrique. 

 Les matrices symétriques et antisymétriques forment deux S.E.V. supplémentaires dans 

n() ou encore n()  = n()  n() 

 Attention: supplémentaire ne signifie pas complémentaire. 
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4. Familles de vecteurs 

Dans ce paragraphe, E est un -espace vectoriel et F = (e1, e2,..., en)  est une famille de n 

vecteurs de E, n *. On appelle sous-famille de F toute famille extraite de F (on enlève des 

vecteurs en conservant l'ordre de F) et sur famille de F toute famille dont F est une sous-famille 

(on rajoute des vecteurs en conservant l'ordre de F). 

4.1 Familles génératrices: 

Def: Soit F un SEV de E et F = (e1, e2,..., en)  une famille de F. 

On dit que F est une famille génératrice de F lorsque F = Vect(F) = Vect (e1, e2,..., en) 

Vocabulaire: On dit aussi que F engendre F. 

Remarque: Il n'y a pas unicité de la famille génératrice. 

Dans la pratique : Pour montrer que F = (e1, e2,..., en) est génératrice de F, on montre que  

i1, n, eiF et   x


F, (1, 2, ..., n)n, 
=

=  +  + +  = 
n

1 1 2 2 n n i i

i 1

x e e ... e e  

Proposition 14.7: Soit F = (e1, e2,..., en)  est une famille génératrice de F. 

 On obtient une autre famille génératrice de F en permutant les éléments d'une famille 

génératrice. 

 Si F est une famille génératrice alors toute sur - famille de F obtenue en ajoutant des 

vecteurs de F est encore génératrice de F. 

 On ne peut pas enlever un vecteur d'une famille génératrice sans risquer de perdre le 

caractère générateur sauf s’il est une combinaison linéaire des autres 

4.2 Familles libres, familles liées: 

Def: La famille F = (e1, e2,..., en)  est libre dans E lorsqu’on a l’implication suivante: 

(1, 2,..., n)n, 
=

 =   =  = =  =
n

i i 1 2 n

i 1

e 0 ... 0


. 

ou encore l’équation 
=

 =
n

i i E

i 1

e 0  admet (0, 0,…, 0) comme unique solution dans n, 

Une famille qui n'est pas libre est dite liée. 

Vocabulaire: Si F est libre alors on dit que les vecteurs e1, e2,...et en sont linéairement 

indépendants et si F est liée, on dit que les vecteurs e1, e2,...et en sont linéairement dépendants. 

Proposition 14.8: La famille F = (e1, e2,..., en) de E est liée ssi un des vecteurs de F est une 

combinaison linéaire des autres vecteurs de F. 

Conséquences: 

 Toute famille contenant deux vecteurs colinéaires est liée. 

 Toute famille contenant 0E ou une répétition est liée. 

 Toute sous-famille d'une famille libre est encore libre. 

 Toute sur-famille d’une famille liée est liée. 

 Toute famille obtenue par permutation des éléments d'une famille libre est libre 

 Si x  0E alors (x) est libre dans E. 

 (x, y) est libre dans E ssi x et y ne sont pas colinéaires. 

Proposition 14.9: Soit  = {e1, e2,..., ep} une famille libre de E et v un vecteur de E. 

F = {e1,...,ep, v} est libre ssi v Vect(). 

Dans la pratique: On ne peut pas rajouter un vecteur à une famille libre sans risquer de perdre la 

liberté sauf si ce vecteur n'est pas combinaison linéaire des autres. 
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4.3 Bases d’un sous-espace vectoriel: 

Def: Soit F un SEV de E. On dit que B = (e1, e2,..., en) est une base de F lorsque B est à la fois 

libre dans E et génératrice de F. 

Remarque: Si E admet une base B, n'y a pas unicité de cette base, en particulier on a encore une 

base en permutant les vecteurs de B. 

Exemples à connaître. 

((1,0), (0,1)) est la base canonique de ². 

((1, 0, …, 0), (0, 1, 0, …, 0), …, (0 , 0, …, 1)) est la base canonique de n. 

(Ei,j)1≤i≤n, 1≤j≤p
 est la base canonique de n,p(). 

Théorème 14.1 et définition: Soit B = (e1, e2,..., en) une famille de F. 

B est une base de F si et seulement si  tout vecteur x


 de F s'écrit de manière unique comme 

combinaison linéaire des éléments de B ou encore, 

xF,  !(1, 2,..., n)n, 
=

= 
n

i i

i 1

x e  

Les scalaires i sont les coordonnées ou composantes de x dans B. 

Attention: les coordonnées dépendent de la base choisie. Il faut faire attention à l'ordre des 

vecteurs de la base quand on donne les coordonnées. 

Corollaire: Soit F de base B1 et G de base B2 deux sous-espaces vectoriels de E. 

B = (B1, B2) obtenue en concaténant les bases de F et de G est une base de E ssi E = FG. 

Vocabulaire : On dit que les bases B1 et B2 sont adaptées à somme directe. 

 

5. Espace vectoriel de dimension finie 

5.1 Définition. 

Def: On dit qu’un -espace vectoriel non nul est de dimension finie lorsqu’il admet une famille 

génératrice finie. Dans le cas contraire, il est de dimension infinie. 

Convention: E = {0E} est de dimension finie. 

Exemples: ²(le plan) , 3 (l'espace), n, n,p(). 

5.2 Existence de base en dimension finie 

Théorème 14.2 dit de la base extraite : Soit E non nul et de dimension finie. De toute famille 

génératrice finie , on peut extraire une base de E. 

 Preuve : On prouve l’algorithme suivant : 

B    

Tant que B est liée faire 

    On cherche un vecteur v de B combinaison linéaire des autres. 

    B  B \ {v} 

Afficher B 

Corollaire: Tout  - espace vectoriel non nul de dimension finie admet une base. 

 

Théorème 14.3 dit de la base incomplète Soit E non nul et de dimension finie. Toute famille 

libre  peut se compléter pour donner une base de E. 



PCSI2 

N.Champarnaud-LMB-fev 2024 

 Preuve : On prouve l’algorithme suivant : Soit  = (e1, e2,..., en) une famille génératrice de E.  

B    

Pour k allant de 1 à n faire 

    Si ekVect(B) alors 

        B  B{ek} 

Afficher B 

Dans la pratique: On peut fabriquer une base de E des deux manières suivantes: 

 En enlevant des vecteurs à une famille génératrice jusqu’à avoir une famille libre. 

 En complétant une famille libre avec des vecteurs qui ne sont pas combinaison linéaire des 

précédents, jusqu’à avoir une famille génératrice. 

5.3 Dimension d'un espace vectoriel. 

Lemme de la dimension: Soit E un -ev non nul de dimension finie. Si E admet une base de 

cardinal p alors toute famille d'au moins (p + 1) vecteurs de E est liée. 

Démonstration : Il suffit de le montrer pour p + 1 vecteurs 

On note B = (e1, ..., ep) une base de E. 

On considère une famille F = (u1, ..., up, up+1) et des scalaires 1, ..., p, p+1 tels que  

+ +
 + +  =

1 1 p 1 p 1 E
u u 0 . 

On a pour tout k entre 1 et p + 1, uk = 
k,1 1 k,p p

a e a e+ + . 

En injectant dans l’égalité précédente et en identifiant on obtient un système homogène 

1 1 ,1 2 2 ,1 p 1 p 1 ,1

1 1 ,p 2 2 ,p p 1 p 1 ,p

a a a 0

a a a 0

+ +

+ +

  +  + +  =


 +  + +  =







 

de p équations à (p + 1) inconnues. Ce système a une infinité de solutions donc la famille est liée. 

Conséquence: Si on une base de cardinal p alors les familles libres sont de cardinal au plus p. 

et les familles génératrices sont de cardinal au moins p. 

Théorème 14.4 dit de la dimension : Soit E non nul et de dimension finie, si B = (e1,..., en) et 

B’ = (e’1,..., e’p) sont deux bases de E alors n = p. 

Def : Soit E un EV de dimension finie. 

La dimension de E est l’entier naturel noté dim E défini par : 

• dim E = 0 si E = {0E} 

• dim E est le cardinal de toutes les bases de E sinon. 

Exemples à connaître : 

 dim  = 1 mais, attention, en tant que -ev, dim  = 2. 

 Un -ev de dim 1 est une droite vectorielle, un -ev de dim 2 est un plan vectoriel. 

 dim n = n en tant que -EV 

 dim n, p = np  

 Si E et E’ sont de dimension finie alors EE’ aussi et dim E E' = dimE + dimE' 

 

Proposition 14.10: Caractérisation des bases:  Soit E un -ev de dimension n. 

 Toute famille libre est de cardinal au plus n et si F est libre et de cardinal n alors F est une 

base de E. 

 Toute famille génératrice est de cardinal au moins n et si F est génératrice et de cardinal n 

alors F est une base de E. 
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Dans la pratique: Si dim E = n, alors pour montrer qu'une famille de cardinal n est une base, il 

suffit de montrer qu'elle est libre ou bien qu'elle est génératrice. 

Exercice : Montrer que I et   sont de dimension infinie 

 

6. Sous-espaces vectoriels en dimension finie 

6.1 Dimension d'un sous-espace vectoriel. 

Def : On dit qu’un sous-espace vectoriel F de E est de dimension finie si l’espace vectoriel F est 

de dimension finie. 

Exercice résolu : 14.17 

Exemples à connaître :  

• Les ensembles de solutions des EDL homogènes sont des EV de dimension 1 pour les EDL1 et de 

dimension 2 pour les EDL2 

• L’ensemble des suites qui vérifient une SRL2 est un EV de dimension 2. 

Proposition 14.11: Soit E de dimension finie. 

 Tout SEV F de E est aussi de dimension finie et dim F  dim E 

 Si F est un SEV de E tel que dim F = dim E alors F = E. 

6.2 Supplémentaire en dimension finie 

Proposition 14.12: Existence d'un supplémentaire en dimension finie 

Soit E de dimension finie, tout SEV F de E admet un supplémentaire G dans E et 

dim E = dim F + dim G. 

Dans la pratique: 

 Le SEV engendré par des vecteurs qui complètent une base de F pour obtenir une base de E 

est un supplémentaire de F dans E. 

 Il n'y a pas unicité du supplémentaire: Soit P un plan 3, toute droite vectorielle D non incluse 

dans P est supplémentaire à P dans 3. Faire une figure 

Théorème 14.5: Formule de Grassmann 

Soit E de dimension finie et F et G deux SEV de E. 

dim (F + G) = dim F + dim G - dim (FG) 

Corollaire: Caractérisation des supplémentaires en dimension finie. 

Soit E de dimension finie et F et G deux SEV de E. 

 F  G = E  E = F + G et dimE = dimF + dimG 

 F  G = E   FG = {0E} et dimE = dimF + dimG 

6.3. Rang d’une famille de vecteur 

Def: Soit F une famille de vecteurs de E. Lorsque le sous –espace F engendré par F est de 

dimension finie, sa dimension est le rang de la famille F noté rg(F). 

C’est-à-dire, sous réserve d’existence, rg(F) = dim Vect(F). 

Dans la pratique : le rang de F est le cardinal de la plus grande famille libre que l’on peut extraire 

de F. 
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Proposition 14.13 : Soit F = (e1, e2,...,ep) dans E de dimension n 

 rg(F)  n et [rg(F) = n  F est génératrice de E]. 

 rg(F)  p et [rg(F) = p  F est libre dans E]. 

 rg(F) = n = p  F est une base de E 

 rg(F) = 0   u


F, u 0=


 

Dans la pratique : On modifie pas le rang d’une famille de vecteurs si : 

 On supprime un vecteur nul ou un vecteur figurant plusieurs fois (en laissant au moins un 

exemplaire de ce vecteur !). 

 On permute les vecteurs de la famille. 

 On multiplie un vecteur par un scalaire non nul. 

 On ajoute à un vecteur une combinaison linéaire des autres vecteurs. 

 On enlève un vecteur combinaison linéaire des autres vecteurs. 

  



PCSI2 

N.Champarnaud-LMB-fev 2024 

Annexe : Quelques représentations 

 
 Droite vectorielle : 

 

 
 

 Plan vectoriel : 

 
 

 Somme directe : E1 et E2 sont en somme directe : 

vE1 + E2,  !x1E1,  !x2E2, v = x1 + x2.  

 
 

Remarque : Ici on a aussi E1, E2 et E3 en somme directe. 

 
 Sous-espaces supplémentaires : FG = E 

wE,  !uF,  !vG, w = u + v 

 


