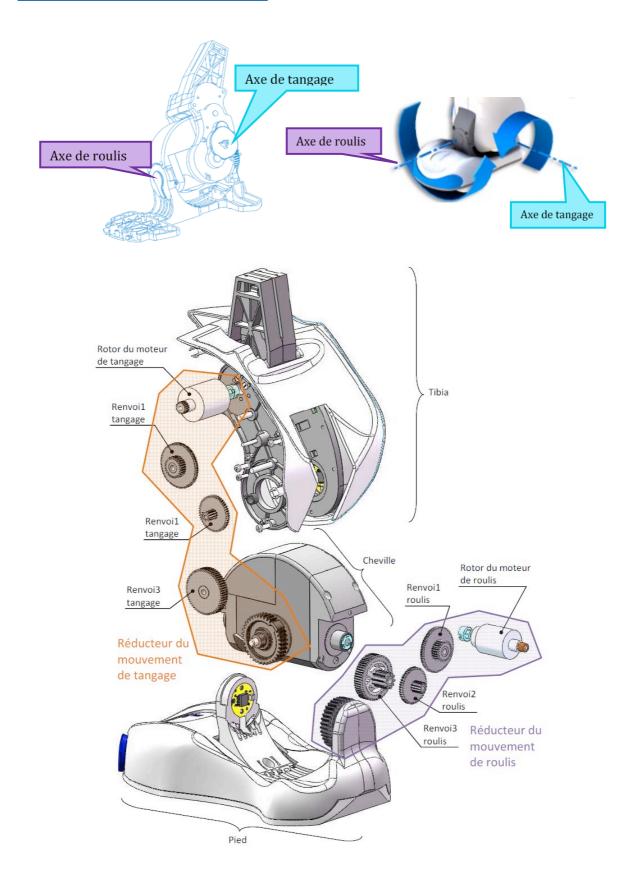
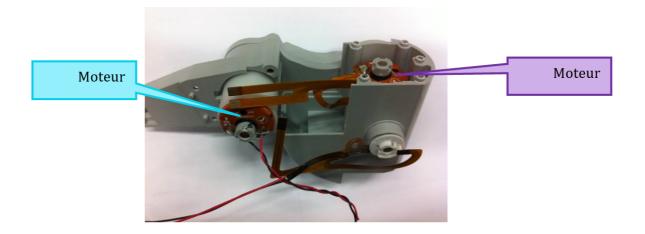
CHEVILLE NAO

DOSSIER TECHNIQUE



Source : A. Roux



DOCUMENTATION CONSTRUCTEUR

ANGLES DE TANGAGE ET DE ROULIS

MOTEURS A COURANT CONTINU

Portescap

MOTOR TYPE **Brush DC Coreless**

Model	22NT82213P
Number	×2
No load speed	8300 rpm ±10%
Stall torque	68 mNm ±8%
Continuous torque	16.1mNm max

Product Designation 22NT 82 213P 1001 09/10

Rotor Inertia

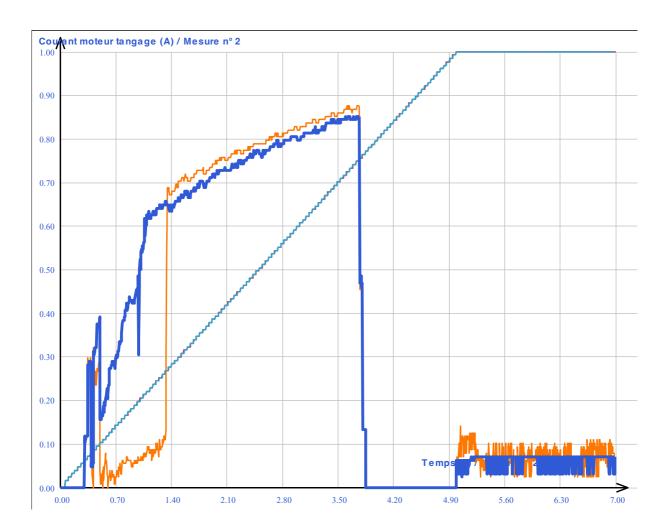
Stall torque

Portescap

typical typical typical typical typical

±8%

4.8


Kgm² 10

Spe	cification	unit	value	toleran ce
Mea	sured values			
1	Measuring voltage	V	18	-
2	No-load speed	rpm	8300	±10%
3	No-load current	mA	75	max
4	Starting voltage	V		max
5	Terminal resistance	Ohm	5.4	±10%
Rec	ommended values			
10	Continuous current (at 22°C)	A	0.92	max
11	Continuous torque	mNm	16.1	max
12	Angular acceleration	10 ³ rad/s ²	181	max
13	Ambient working temperature range	°C	-30°C to 65°C	typical
14	Rated coil temperature	°C	155	max
Intri	nsic parameters			
20	Back-EMF constant	V/1000 rpm	2.03	±8%
21	Torque constant	mNm/A	19.4	±8%
22	Motor regulation R/k2	10 ³ /Nms	13.71	typical
23	Rotor inductance (@1kHz)	mH	0.6	typical
24	Mechanical time constant	ms	4.5	-
25	Thermal resistance rotor-body	°C/W	6	typical
26	Thermal resistance body-ambient	°C/W	22	typical
27	Thermal time constant – rotor	S	9	typical
28	Thermal time constant –stator	S	550	typical
20	Detected to the	V2 40-7	4.0	to an total at

SATURATIONS

Des saturations ou limitations sont mises en place dans la commande de la cheville pour principalement protéger les composants.

Les relevés de mesure ci-dessous permettent de les mettre en évidence.

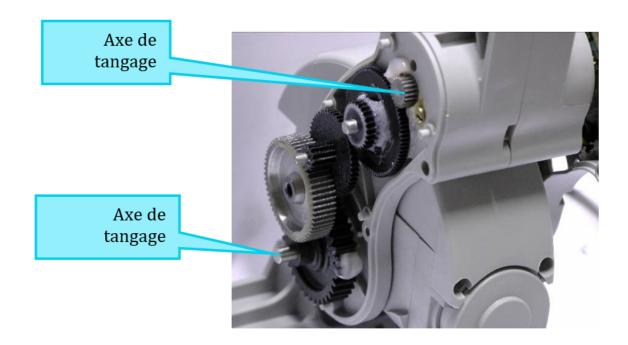
- En turquoise: La consigne, PWM croissant au taux de 0,2 (20%) par seconde.
- <u>En orange</u>: Evolution du courant lorsque la cheville démarre en position de référence. Elle atteint la butée au bout de 1,4 s environ.
- En bleu : Toujours le courant, mais cette fois la cheville est en butée dès le départ.

ANALYSE DES COURBES :

<u>En orange</u>: jusqu'à 0,4 s environ, la cheville ne bouge pas. Lorsqu'elle démarre, "secousse" dans le courant, puis accroissement proportionnel à l'évolution de la tension jusqu'à 1,35 s.

On atteint la butée, accroissement instantané du courant, qui progresse ensuite presque proportionnellement au PWM, avec une pente comparable à celle de la phase de mouvement.

Arrivé à 0,85 ampère, on constate une chute du courant à 0.


Il y a clairement ici une limitation du courant de type tout ou rien. Le PWM continue à augmenter, le courant reste à 0. Quand il atteint 1 (100%), il y a clairement un autre mode de protection, qui limite le courant à 0,1 A.

En bleu: l'analyse est la même, sauf la phase de déplacement qui est remplacée par une phase de déformation de pente beaucoup plus forte, mais qui aboutit à peu près au même endroit à t = 1 s.

CONCLUSION: 3 modes de protection du moteur:

- Une limitation en courant lorsqu'il dépasse 0,8 A; Il est alors forcé à 0 (tension nulle).
- Une autre limitation lorsque le PWM atteint 100%. Il doit être forcé à 10%, ce qui correspond à un courant de 0,1 A environ.
- L'anti shaking qui évite les sollicitations alternées à chaque pas de commande. Elle n'intervient pas ici.

TRAIN D'ENGRENAGES POUR L'AXE DE TANGAGE ET DE ROULIS

Les rapports de réduction sont donnés ci-dessous roulis (Roll) et tangage (pitch) :

SPEED REDUCTION RATIO

ANKLEPITCH

SPEED REDUCTION RATIO

ANKLEROLL

Reduction ratio 130.85 Reduction ratio 201.3

Ankle Pitch	Module	Z	Coefficient de déport	Entraxe de fonctionnement	Rapport de réduction
pignon_03_20		20	0		
mobile_inf_1 - roue	0,3	80	0	15	4
mobile_inf_1- pignon	0,4	25	0,214	14,5	1,88
mobile_inf_2 - roue		47	0,042		
mobile_inf_2 - pignon 0,4		12	0,564	14,5	4,83
mobile_inf_4 - roue		58	0,836		
mobile_inf_4 - pignon	0,7	10	0,541	16,8	3,6
roue_sortie_inf		36	0,603		
Rapport					130,85

Ankle Roll	Module	Z	Coefficient de déport	Entraxe de fonctionnement	Rapport de réduction
pignon_03_13		13	0		6,15
mobile_inf_1 - roue	0,3	80	0	13,95	
mobile_inf_1- pignon	0,4	25	0,214	14,5	1,88
mobile_inf_2 - roue		47	0,042		-
mobile_inf_2 - pignon	0,4	12	0,564	14,5	4,83
mobile_inf_3 - roue		58	0,836		
mobile_inf_3 - pignon	0.7	10	0,541	16,8	3,6
support_denté	0,7	26	0,603		
conico-cylindrique		36			
Rapport					201,3

Chaîne de transmission en TANGAGE

Chaîne de transmission en ROULIS