DRONE D²C

DOSSIER TECHNIQUE

Source : A. Roux

DOCUMENTATION CONSTRUCTEUR

MOTEURS BRUSHLESS

D2632-1000

New type motor with 0.2mm silicon-carbon stator and magnet with 9 pole in high performance, Integrated motor mount and front prop holder. This motor was designed especially for 450g-600g airplane and 3D plane and KT plane. It can use 7"-10" proppeller.

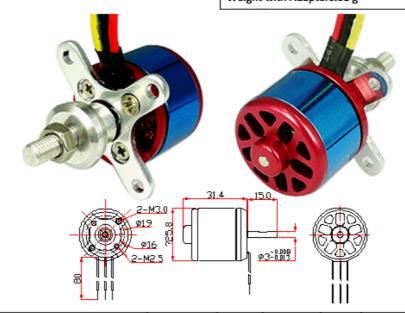
Specification

No.of cells:2-3 LI-POLY

RPM/V:1000 RPM/V

Max.efficiency:80%

Max.efficiency current:7A-13A


No load current:11.1V/0.4A

Current capacity:13A/20S

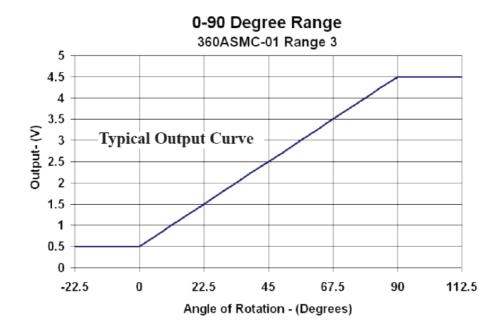
Internal Resistance:0.262 ohm

Dimensions(diameter.X length):Φ25.8X32.2mm

Shaft diameter: \$\Phi 3.0mm \$\$ Weight with Adapters: 61 g

USED	WEIGHT OF MOTOR	LI-PO CELLS	CRRENT MAX	ESC	PROPELLER	PULL
Airplane	53g	3S	13A/20S	15A	1005	690g
3D plane	53g	3S	9A/20S	15A	8X3.8	560g
KT plane	53g	3S	8.5A/20S	10A	10X4.7	440g

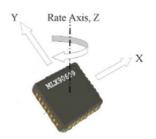
RPM : Rotation Per Minute (nombre de tour par minute = vitesse de rotation)


CAPTEUR DE POSITION ANGULAIRE DE TANGAGE

Le capteur de position placé à l'arrière de la carte « mesures » est un capteur sans contact permettant de connaître la position grâce à un aimant placé sur l'axe du balancier.

Il permet de mesurer la différence d'angle de rotation du drone (ou balancier) en prenant comme référence un aimant placé sur le bâti fixe du banc d'essai.

Il fournit une tension image de la position angulaire du balancier. Cette tension évolue dans un sens croissant lorsque le balancier pivote en sens horaire.


CAPTEUR MAGNETIQUE + CAN

Sensibilité: 0,00444 V/°

Sortie pour un angle nul : 2,5 V

GYROMETRE + CAN

Sur le Gyromètre MLX 90609 la mesure de vitesse s'effectue autour d'un axe noté Z qui est perpendiculaire au plan de montage de la puce.

Un extrait de la fiche technique est proposé ci-dessous. Les valeurs importantes concernant la version R2 choisie pour le drone didactique sont entourées.

4. MLX90609 Sensor Specific Specifications

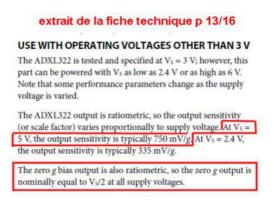
DC Operating Parameters T_A = -40 °C to 85 °C, VDD = 4.75V to 5.25V (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Output Full Scale	$FS_{OUT} = U_{OUT,Gomm}$			4		٧
(on OUTAR pin)	-U OUT,DEE			1920		LSB
Full Scale Range	FS _a	Factory set for N2 version		±75		*/s
		Factory set for E2 version Factory set for R2 version	_	±150 ±300		
Linearity Note 2		Output, best fit based			+/-0.5	% FSour
Initial Scale Factor (sensitivity)	$S_0 = \frac{FS_{OM}}{FS_{DN}}$	Data are given for NZ, E2 and RZ versions respectively and according to the Full		26.67 13.33 6.67		mV/*/sec
		Scale Range Setting. At 25°C, VDD=5V.		12.8 6.4 3.2		LSB/*/se
Scale Factor drift (sensitivity drift) Note 1		40.+85°C temperature range, supply voltage variation included	-5		5	%S ₀
Zero Rate Output (Bias)	ZRO	at 25°C, VDD=5V		25		٧
				1008		LSB
Zero Rate Temperature drift (Bias drift) Note 1		-40+85°C temperature range, VDD=5V	-5	0	5	% FSour
Zero Rate Supply Dnift		4.75.5.25V at 25°C		250		mV/V
		4.75.3.25V at 25°C		120		LSB/V
Bandwidth (-3 dB) Note 2		Selectable by external capacitor (section 6)			75	Hz
FLT to OUTAR capacitor value Note 2		7 Hz Bandwidth (-4.5 to -1 dB)		100 ±5%		nF
Output Noise power spectral density		At 25°C		0.03		*/sec/vH
Angular Rate Cross-sensitivity for 0x 0y Net 2		for a full-scale angular rate along 0x.0v		1	2	%FSout

On y lit:

pleine échelle: + ou – 300 °/s
sensibilité: 6,67 mV/(°/s)
sortie à vitesse nulle: 2,5 V

Ce capteur est associé à un CAN (Convertisseur Analogique Numérique) codant sur 11 bits, soit $2^{11} = 2048$ valeurs, dont 1 bit est réservé au signe. La grandeur issue du CAN est donc un entier (écrit en binaire) compris entre -1023 et +1024 et qui correspond à une tension en sortie du capteur comprise entre -5 V et +5V.


ACCELEROMETRE UTILISE EN INCLINOMETRE + CAN

L'accéléromètre ADXL322 est un accéléromètre à « 2 axes ». Son principe est basé sur la mesure de la force exercée par une masse qui subit une accélération (principe fondamental de la dynamique). Dans le Drone D2C, il mesure la composante verticale de la force exercée par le poids de la masse soumis à l'action de la pesanteur, cette mesure lui permet de connaître l'angle d'inclinaison du balancier par rapport à l'horizontale.

Un extrait de la fiche technique est proposé ci-dessous. Les valeurs importantes concernant la version choisie pour le drone didactique sont entourées.

Parameter	Conditions	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range			±2		9
Nonlinearity	% of full scale		±0.2		96
Package Alignment Error			±1		Degrees
Alignment Error	X sensor to Y sensor		±0.1		Degrees
Cross-Axis Sensitivity			±2		96
SENSITIVITY (RATIOMETRIC) ²	Each axis				
Sensitivity at X _{OUT} , Y _{OUT}	V ₅ = 3 V	378	420	462	mV/g
Sensitivity Change due to Temperature ³	V ₅ = 3 V		0.01		%/°C
ZERO q BIAS LEVEL (RATIOMETRIC)	Each axis				
0 g Voltage at Xouт, Youт	$V_5 = 3 \text{ V}$	1.3	1.5	1.7	V
Initial 0 g Bias Deviation from Ideal			±50		mg
0 g Offset Vs. Temperature			<±0.5		mg/°C

Ces valeurs doivent être adaptées car le capteur est alimenté avec une tension de 5V et non pas 3V.

En conclusion, dans le cas du drone D2C, avec l'alimentation du capteur en 5V :

• Sensibilité pour un fonctionnement en accéléromètre : 0,75 V/g

Sensibilité pour un fonctionnement en inclinomètre : 0,013 V/°

Sortie à inclinaison nulle : 2,5 V

Ce capteur est associé à un CAN (Convertisseur Analogique Numérique) codant sur 11 bits, soit 2^{11} = 2048 valeurs, dont 1 bit est réservé au signe. La grandeur issue du CAN est donc un entier (écrit en binaire) compris entre -1023 et +1024 et qui correspond à une tension en sortie du capteur comprise entre -5 V et +5V.