

Prise en main Xcos

1 - Étude temporelle

Prise en main Scilab 1/4

Palettes

Pour lancer Scilab :

 Dans le dossier Scilab sur le bureau, cliquer sur « start_scilab » présent dans vos documents

2. Dans la zone de texte, taper
 « xcos » et appuyer sur entrée. -->xcos
 Deux fenêtres s'ouvrent.

3. Développer l'arbre pour ouvrir le dossier CPGE

Blocs couramment utilisés Systèmes à temps continu Fonctions discontinues Systèmes à temps discret Interpolation Gestion d'événements Opérations mathématiques Matrice Électrique Entier Port et sous-système Détection de passage à zéro Routage de signal Traitement du signal Implicite Annotations Sinks Sources Thermohydrauliques Blocs de démonstration Fonctions définies par l'utilisateur CPGE Entrées Opérateurs linéaires Non-linéarités Sorties Analyses Visuels Fonctionnalités avancées

4. Sélectionner la fonction échelon (step)

5. Glisser ce bloc dans la zone de dessin

6. Faire de même pour le comparateur (pour transformer un « Big som » en comparateur, double cliquer dessus et inscrire (1,-1) dans la fenêtre qui s'ouvre)

7. Relier les deux blocs en cliquant sur le triangle noir d'un des deux blocs et faire glisser le fil jusqu'à l'autre

8. Le bloc ci-contre permet de représenter une fonction de transfert du premier ordre
La variable de Laplace est notée « s »

Prise en main Scilab 2/4

1. Le bloc ci-contre permet de modéliser un gain.

Format Outils ?

Pivoter

2. Vous pouvez ensuite tourner le bloc gain

3. Pour afficher la réponse temporel, les deux blocs ci-contre sont nécessaires, l'un pour fixer la durée de l'essai et l'autre pour afficher les courbes. Il faut relier le bloc « Scope » à la grandeur que vous souhaitez observer

4. Une fois que tous blocs sont installés, il faut« déclarer » les constantes qui seront utilisées.Cliquer sur « Modifier le contexte ».

5. Dans la fenêtre qui s'ouvre, lister les constantes qui seront utilisées (K, T, G) et fixer la valeur souhaitée à chacune des variables (il faut utiliser un point pour remplacer la virgule d'une valeur décimale). Cliquer ensuite sur OK.

Modifier le contexte	X
Vous pouvez entrer ici des instructions Scilab pour définir les paramète symboliques utilisés dans les définitions de bloc à l'aide des instruction Scilab. Ces instructions sont évaluées après confirmation (c'est-à-dire cliquez OK à chaque fois que le diagramme est chargé).	res Is sur
K=10 T=1	
Ok Annul	ler

Prise en main Scilab 3/4

1. Une fois que les constantes ont été déclarées, il faut modifier chacun des blocs pour y inscrire ces constantes (en double cliquant dessus, les blocs s'ouvrent).

2. Modifier également l'échelon pour qu'il corresponde à la fenêtre ci-dessous

Demande de plusieurs valeurs Scilab		
Définir STEP_FUNCTION les paramètres du bloc		
	Fonction de Heaviside	
	Instant de l'échelon	0
	Valeur initiale	0
	Valeur finale	1
Ok Annuler		

3. Modifier ensuite le bloc time pour limiter l'observation à 3 secondes

Demande de plusieurs valeurs Scilab		
<u>.</u>	Paramètres de l'étude temporelle	
	Nombre de points	200
	Durée de la simulation	3
	Grille affichée (2 auto, 1 oui, 0 non)	1
	Connaitre le temps de réponse à x% (x oui, -x oui avec visuel, 0 non)	0
	Connaitre le temps de montée à x% (x oui, -x oui avec visuel, 0 non)	0
	Connaitre le premier dépassement (1 oui, -1 oui avec visuel, 0 non)	0
	Ok Annuler	

4. Une fois que vous avez finit, vous devriez avoir ceci :

Prise en main Scilab 4/4 : Param. variation

Il est possible d'étudier l'influence d'un paramètre sur la réponse du système étudié. Pour cela il faut :

1. Ajouter la variable dans le *Contexte*.

- Dans l'*Editeur*, aller dans le menu *Simulation*, puis *Modifier le contexte*.
 Une nouvelle fenêtre s'ouvre.
- Rentrer le nom du paramètre et sa valeur par défaut (exemple : *k*=1). Attention, ne pas nommer une variable t car le logiciel utilise déjà ce nom de variable pour le temps.

2. Modifier la fonction de transfert en remplaçant la valeur du gain par *k*.

3. Ajouter le bloc *Param. variation* (dans le *Navigateur de palettes* et *Analyses*) et entrer ensuite le nom du paramètre variable et ses valeurs.

Répéter les trois premières opérations pour ajouter un autre paramètre variable

Attention : Pour l'affichage des courbes, il ne faut faire varier qu'un seul paramètre, tous les autres étant fixes.

Annexe : bibliothèque

Symbole	Nom / Fonction	Paramètres réglables
1	Entrée constante	Valeur du signal d'entrée
	Entrée échelon	Instant initial du signal (si 0 : pas de retard) Valeur initiale du signal d'entrée Valeur finale du signal d'entrée
	Entrée rampe	Valeur de la pente (0 par défaut) Instant de départ (si 0 : pas de retard) Valeur initiale
Curve	Entrée définie par l'utilisateur	Possibilité de créer soi-même l'allure souhaitée en modifiant les points de la courbe
\mathbb{N}	Entrée sinusoïdale	Amplitude du signal Fréquence du signal (rad/s) Phase du signal (rad)
	Entrée Dirac	Instant de l'impulsion Durée de l'impulsion
-III-	Entrée créneau	Instant initial (si 0 : pas de retard) Durée du signal Valeur initiale et finale Valeur du créneau
	Entrée trapézoïdale	Amplitude du signal / Largeur du trapèze Début du signal / Valeur initiale Temps de montée /descente

Annexe : bibliothèque

Symbole	Nom /	Fonction	Paramètres réglables
• 5•	Intéş	grateur	Condition initiale Limite supérieure Limite inférieure
►du / dt	Déri	vateur	
Σ	Sommateur	/ Comparateur	Signe des 2 ports de gauche : +1 = POSITIF -1 = NEGATIF (Un comparateur se note [1 ; -1]) (Un sommateur se note [1 ; 1])
1	Gai	in pur	Valeur du gain pur
1 $1+s$	Fonction	de transfert	Fonction de transfert du numérateur Fonction de transfert du dénominateur s est la variable de Laplace s ² se note s*s
PI	Correcteur Intégral (Proportionnel 2 ^{ème} année)	Gain Proportionnel Gain Intégral
PID	Correcteur Intégral Déri	Proportionnel vé (2 ^{ème} année)	Gain Proportionnel Gain Intégral Gain Dérivé Constante de temps pour le filtre sur la dérivée
Symbole	Nom / Fonction	Paramètres régl	ables
•	Saturation	Valeur supérieur Valeur inférieure Courbe coupe zé	re e éro (0 = non, 1 = oui)

Opérateur linéaire

Opérateur non linéaire

Prise en main Xcos

2 - Étude fréquentielle

Etude fréquentielle avec Scilab

1. Reprendre un schéma bloc déjà construit puis supprimer le bloc « Time » pour ne plus avoir l'étude temporelle

2. Dans le « navigateur de palettes », insérer le bloc« Bode » sur votre schéma bloc ainsi que deux blocs« Grandeur_Physique »

Les deux blocs « Grandeur_Physique » correspondent au signal d'entrée et au signal de sortie, il faudra donc les disposer ainsi (en supprimant au préalable les blocs en lien avec la représentation temporelle) :

3. Cliquer sur le bloc « Bode » pour demander l'affichage des asymptotes

4. Vous pouvez alors lancer la simulation en cliquant sur

5. Xcos permet aussi de simuler plusieurs courbes en simultané. Insérer un bloc « Param_Var » dans votre schéma bloc et demander à faire varier le paramètre K ainsi :

Demande de plusieurs valeurs Scilab		
	Analyse paramétrique	
	Nom du 1er paramètre K	
	Valeurs du 1er parametre [1 2 3]	
	Nom du 2nd parametre	
	Valeurs du 2nd parametre	
	Nom du 3eme parametre	
	Valeurs du 3eme parametre	
	Ok Annuler	

5. Vous pouvez alors lancer la simulation pour observer l'influence dans le diagramme de Bode du paramètre choisi.

Applications de cours

Application 1

On rappelle la fonction de transfert du TD 4

$$\frac{Z_a(p)}{Z_p(p)} = \frac{1+0.01p}{1+0.01p+0.01p^2}$$

Question 1 : Avec Scilab, tracer le diagramme de Bode asymptotique de cette fonction de transfert en déterminant avec précision les pulsations, les valeurs et les pentes caractéristiques. Préciser également la valeur en décibel du pic de résonnance. Comparer le résultat avec le diagramme obtenu en cours.

Question 2 : Déterminer, en utilisant le module Bode de Scilab, les marges de stabilité.

La correction est donnée slide suivante.

Correction application 1

Application 2

On rappelle la fonction de transfert du TD 5 :

$$G(p) = \frac{K}{p\left(1 + \frac{p}{5}\right)^2}$$

Le tracé asymptotique du gain donné dans le TD est le suivant :

Question 1 : Retrouver ce même diagramme réel de G(jw) avec Scilab pour K = 1.

Question 2 : Déterminer, en utilisant le module Bode de Scilab, les marges de stabilité pour K = 1.

Question 3 : Déterminer la valeur maximum du gain *K* qui donne une marge de gain mini de 6 dB et une marge de phase mini de 45°. Comparer avec les valeurs du TD.

La correction est donnée slide suivante.

Correction application 2

Application 3

On rappelle la fonction de transfert du TD 6 :

$$G(p) = \frac{0,001 * K_{CO}}{p\left(1 + \frac{p^2}{1500^2}\right)}$$

Question 1 : Tracer le diagramme réel de G(jw) avec Scilab pour $K_{CO} = 10^6$. Déterminer les marges de stabilité avec Scilab. La valeur de la marge de gain vous parait-elle correcte ?

Question 2 : On modifie la fonction de transfert afin de prendre en compte les frottements fluides. On ajoute un coefficient $\xi = 750$. Modifier la forme de G(p) dans Scilab, prenant en compte ce frottement. Tracer le diagramme de Bode pour $\omega_{min} = 1 \ rad/s$ et $\omega_{max} = 10^5 \ rad/s$. Le tracé réel de la phase vous parait-il pertinent ?

La correction est donnée slide suivante.

Correction application 3

Question 1 : Marge de gain fausse, en réalité elle tend vers l'infini. Valeur fini donnée car calcul discret par Scilab. **Question 2** : Phase aberrante : difficulté pour Scilab de fonctionner avec des ordres 3.

Cours : modélisation causale ou acausale

La modélisation causale est celle que vous connaissez.

Elle ne requiert aucune connaissance des symboles (électriques, mécaniques, etc.), la recherche des solutions analytiques est simplifiée mais le schéma impose un ordre de résolution au solveur et l'architecture du modèle respecte rarement celle du système étudié.

La modélisation impose de connaître les équations différentielles qui régissent le système et repose sur le calcul symbolique (Laplace, schéma blocs). Les conditions initiales sont nulles et le modèle est « irréversible » cause \rightarrow un effet (sens des flèches).

L'étude fréquentielle est simple et ne nécessite pas de passer par l'analyse temporelle.

La **modélisation acausale** est plus récente. Les blocs sont facilement identifiables et le modèle se compose de façon intuitive en suivant l'architecture du système réel. Cette modélisation est réversible. Le modèle de connaissance du composant n'est pas indispensable à la réalisation du modèle, **mais** il faut maitriser les paramètres influant sur le comportement.

En pratique, cela signifie juste que l'on construit le modèle sans savoir à priori **où sera l'entrée ou la sortie** et en respectant simplement l'architecture du système.

L'analyse fréquentielle est plus délicate qu'avec un modèle causal : il faut procéder à des simulations temporelles successives en utilisant un signal d'entrée périodique dont on fait varier la fréquence.

