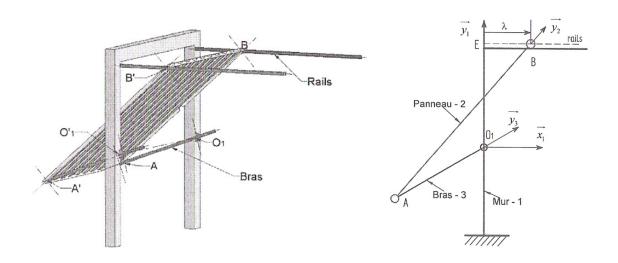


DM 3 - SI

Consignes


- Copies propres et bien présentées: encadrer vos résultats, souligner les applications numériques (avec une règle bien sûr)...
- Aucun retard ne sera accepté. Date de rendu au pied des autres pages.

1. Portail basculant

1.1 Présentation

Le portail basculant est articulé par rapport au mur grâce à deux bras (3). Les deux bras

- (3) pivotent par rapport au mur (1) en O_1 et O_1' . Ils sont articulés en A et A' sur le panneau
- (3). Le panneau (3) coulisse en B et B' sur deux rails fixés sur le plafond, grâce à des galets. Pour l'étude nous utiliserons le paramétrage suivant :
 - o le repère R_1 est lié au mur (1);
 - ∘ le repère R₂ est associé au panneau (2);
 - o le repère R_3 est associé au bras (3).

DM 3 - SI Étude

Données

On donne : $\overrightarrow{O_1A} = -a\overrightarrow{y_3}$; $\overrightarrow{AB} = 2a\overrightarrow{y_2}$; $\overrightarrow{O_1E} = a\overrightarrow{y_1}$; $\overrightarrow{EB} = \lambda \overrightarrow{x_1}$; $(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \beta$ et $(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \theta$.

On considère que la liaison entre le panneau (2) et le rail est une ponctuelle en B de normal $\vec{y_1}$. On pose $\vec{z} = \vec{z_1} = \vec{z_2} = \vec{z_3}$.

Question 1: Quelle hypothèses simplificatrices avons nous faites/pouvons nous faire?

1.2 Étude

Question 2: Tracer le graphe des liaisons du système.

Question 3: Tracer la ou les figure(s) de changement de base.

Question 4: Donner les vecteurs rotation $\overrightarrow{\Omega_{3/1}}$, $\overrightarrow{\Omega_{2/1}}$ et $\overrightarrow{\Omega_{3/2}}$.

Question 5: Écrire les torseurs sans définir de nouvelles inconnues, c'est à dire qu'il faut déterminer les expressions des éléments de réduction.

Question 6: Déterminer les relations entre les paramètres géométriques :

- (a). λ en fonction de θ .
- (b). β en fonction de θ .

Question 7: Déterminer $\overrightarrow{V_{A\in 2/1}}$ en fonction de $\dot{\theta}$.

Question 8: Déterminer $\overrightarrow{V_{B\in 3/1}}$ en fonction de $\dot{\theta}$.

Question 9: Soit G_2 tel que $\overrightarrow{AG_2} = a\overrightarrow{y_2}$, déterminer $\overrightarrow{V_{G_2 \in 2/1}}$ puis l'accélération $\overrightarrow{\Gamma_{G_2 \in 2/1}}$, en fonction de θ , β et de leur dérivée.

28/01/2025