Devoir Surveillé 01

(durée : 2 heures, sans calculatrice)

On fera attention à la qualité de la rédaction. Soulignez ou encadrez les résultats et mettez en valeur les arguments importants. La calculatrice est interdite.

Exercice 1. Les sept questions suivantes sont indépendantes.

1. Simplifier au maximum les fractions suivantes :

$$A = \left(\frac{4}{9} - \frac{2}{3}\right) \left(2 - \frac{4}{3}\right) - \left(\frac{3}{5} - \frac{7}{15}\right) \left(\frac{4}{3} - \frac{1}{2}\right) \quad \text{et} \quad B = \frac{2\sqrt{3} + 1}{\sqrt{3} - 1}.$$

2. Écrire sous la forme $2^n \times 3^p$ les nombres suivants :

$$A = (3^2 \times 16^3)^4$$
 et $B = \frac{3^{-2} \times 27}{(3^2)^3 \times 3^{-1}}$.

3. Dans chaque cas, comparer les deux nombres en justifiant :

(a)
$$\frac{43}{8}$$
 et $\frac{26}{5}$

- (b) $2\sqrt{6}$ et $3\sqrt{3}$.
- 4. Résoudre les inéquations suivantes :

(a)
$$x \ge x^3$$

(b)
$$\frac{1}{x} \ge x^3$$

(c)
$$|2x-3|+|x-1| \ge 6$$
.

- 5. Montrer que pour tout $x \ge 0$, $\sin(x) \le x$, puis représenter graphiquement cette inégalité.
- 6. Montrer que pour tout $x \in \mathbb{R}$, $0 \le \lfloor 2x \rfloor 2 \lfloor x \rfloor \le 1$.
- 7. (a) En remarquant que $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$, montrer que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} \sqrt{2}}{4}$.
 - (b) Résoudre sur ℝ l'équation :

$$(\sqrt{6} + \sqrt{2})\cos(x) + (\sqrt{6} - \sqrt{2})\sin(x) = 2.$$

Exercice 2. Pour tout réel m, on considère l'équation (E_m) : $(m+1)x^2 - (m-1)x + (1-m) = 0$. Déterminer le nombre de solutions réelles de l'équation (E_m) en fonction de m. **On fera attention au degré de** (E_m) !

2. En utilisant les formules d'addition, démontrer que pour tous réels x et y :

1. Résoudre l'inéquation cos(2x) > 0.

$$\sin(x+y)\sin(x-y) = \sin^2(x) - \sin^2(y).$$

3. En utilisant les deux premières questions, résoudre l'inéquation trigonométrique

$$\sin^2\left(x - \frac{\pi}{3}\right) - \sin^2\left(x - \frac{\pi}{6}\right) > 0.$$

Exercice 4. 1. A-t-on pour tout $x \in \mathbb{R}$ et tout entier non nul $k \in \mathbb{Z}^* : |kx| = k|x|$? Justifier.

2. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

Exercice 3.

- (a) Justifier que : $n \lfloor x \rfloor \le nx < n \lfloor x \rfloor + n$.
- (b) En déduire que $\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$.
- 3. Aucun rapport : soit $x \in \mathbb{R}_+$. Montrer que $\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor \leq \left\lfloor \sqrt{x} \right\rfloor$, puis que $\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor = \left\lfloor \sqrt{x} \right\rfloor$.

Exercice 5. 1. Rappeler les formules de duplication.

- 2. Soit $k \in \mathbb{N}$ un entier naturel. Justifier que si $x \in \mathbb{R}$ est solution de $\sin(2^k x) = 0$ alors x est aussi solution de $\sin(2^{k+1}x) = 0$.
- 3. Soit $n \in \mathbb{N}$ un entier naturel. Résoudre sur $[0, 2\pi[$ l'équation $\sin(x)\sin(2x)\sin(4x)\cdots\sin(2^nx)=0$.
- 4. Compter le nombre de solutions de l'équation précédente.

Correction du Devoir Surveillé 01

Correction de l'exercice 1:

1.
$$A = -\frac{4}{27} - \frac{1}{9} = -\frac{7}{27}$$
 et $B = \frac{(2\sqrt{3} + 1)(\sqrt{3} + 1)}{2} = \frac{7 + 3\sqrt{3}}{2}$.

2.
$$A = 3^8 \times 2^{48}$$
 et $B = 3^{-4}$.

2.
$$A = 3^8 \times 2^{48}$$
 et $B = 3^{-4}$.
3. $\frac{43}{8} - \frac{26}{5} = \frac{215 - 208}{40} > 0$, donc $\frac{43}{8} > \frac{26}{5}$.

$$(2\sqrt{6})^2 = 24 \text{ et } (3\sqrt{3})^2 = 27, \text{ donc } \boxed{3\sqrt{3} > 2\sqrt{6}}.$$

4. (a)
$$x \ge x^3 \iff x(1-x^2) \ge 0 \iff x(1-x)(1+x) \ge 0$$
 et on fait un tableau de signes :

x	-∞	-1		0		1		+∞
x	_		-	0	+		+	
1 – <i>x</i>	+		+		+	0	-	
1 + x	_	0	+		+		+	
x(1-x)(1+x)	+	0	-	0	+	0	-	

L'ensemble des solutions est donc $]-\infty,-1]\cup[0,1]$

(b)
$$\frac{1}{x} \ge x^3 \iff \frac{1-x^4}{x} \ge 0 \iff \frac{(1-x^2)(1+x^2)}{x} \ge 0 \iff \frac{(1-x)(1+x)(1+x^2)}{x} \ge 0 \text{ et on fait un tableau de signes}:$$

x	-∞		-1		0		1	+∞
x		-		-	0	+		+
1 – x		+		+		+	0	_
1 + x		-	0	+		+		+
(1-x)(1+x)(1+x)(1+x)(1+x)(1+x)(1+x)(1+x)(1+	$1+x^2)$	+	0	-		+	0	-

L'ensemble des solutions est $]-\infty,-1]\cup]0,1]$

(c) On commence par étudier les signes de 2x - 3 et x - 1.

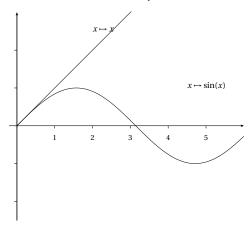
x	$-\infty$		1		$\frac{3}{2}$		+∞
2x-3		_		_	0	+	
<i>x</i> – 1		_	0	+		+	

- Sur l'intervalle $]-\infty,1]$, |2x-3|=-(2x-3) et |x-1|=-(x-1), donc l'inéquation devient $-2x+3-x+1\geq 6\iff -3x\geq 2\iff x\leq -\frac{2}{3}$. Donc sur cet intervalle, l'ensemble des solutions est $S_1=]-\infty,1]\cap \left]-\infty,-\frac{2}{3}\right]=\left]-\infty,-\frac{2}{3}\right]$.
- Sur l'intervalle $\left[1, \frac{3}{2}\right]$, |2x-3| = -(2x-3) et |x-1| = x-1, donc l'inéquation devient $-2x+3+x-1 \ge 6 \iff x \le -4$. Donc sur cet intervalle, l'ensemble des solutions est $S_2 = \left[1, \frac{3}{2} \mid \cap\right] - \infty, -4] = \emptyset.$
- Sur l'intervalle $\left[\frac{3}{2}, +\infty\right[, |2x-3| = 2x-3 \text{ et } |x-1| = x-1, \text{ donc l'inéquation devient } 2x-3+x-1 \ge 6 \iff 3x \ge 10 \iff x \ge \frac{10}{3}$. Donc sur cet intervalle, l'ensemble des solutions est $S_3 = \left[\frac{3}{2}, +\infty\right[\cap \left[\frac{10}{3}, +\infty\right[= \left[\frac{10}{3}, +\infty\right[$.

L'ensemble des solutions de l'inéquation $|2x-3|+|x-1| \ge 7$ est donc

$$S = S_1 \cup S_2 \cup S_3 = \left] -\infty, -\frac{2}{3} \right] \cup \left[\frac{10}{3}, +\infty \right[$$

5. On pose $f: x \mapsto x - \sin(x)$ qui est définie et dérivable sur \mathbb{R}_+ . De plus, pour tout $x \in \mathbb{R}_+$, $f'(x) = 1 - \cos(x) \ge 0$. Ainsi la fonction f est croissante sur \mathbb{R}_+ donc pour tout $x \ge 0$, on a $f(x) \ge f(0) = 0$. Autrement dit, $\forall x \ge 0$, $\sin(x) \le x$. Graphiquement, le graphe de $x \mapsto \sin(x)$ est au-dessous de la droite $y = x \sin \mathbb{R}_+$:



6. Soit $x \in \mathbb{R}$. On a $x - 1 < \lfloor x \rfloor \le x$, donc $2x - 2 < 2 \lfloor x \rfloor \le 2x$ et $-2x \le -2 \lfloor x \rfloor < 2 - 2x$.

De plus, $2x - 1 < \lfloor 2x \rfloor \le 2x$.

En ajoutant les encadrements, on obtient : $-1 < \lfloor 2x \rfloor - 2 \lfloor x \rfloor < 2$. Comme $\lfloor 2x \rfloor - 2 \lfloor x \rfloor$ est un entier, on a $\lfloor 2x \rfloor - 2 \lfloor x \rfloor = 0$ ou 1. Dans les deux cas, on a l'encadrement voulu.

Ainsi, $\forall x \in \mathbb{R}, 0 \le \lfloor 2x \rfloor - 2 \lfloor x \rfloor \le 1$.

7. (a) On applique les formules d'addition :

$$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$$
$$= \frac{\sqrt{2}}{2}\frac{1}{2} + \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2},$$

d'où
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
.

$$\begin{split} \sin\left(\frac{\pi}{12}\right) &= \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{4}\right) \\ &= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + -\frac{\sqrt{2}}{2} \times \frac{1}{2}, \end{split}$$

d'où
$$\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$(\sqrt{6} + \sqrt{2})\cos(x) + (\sqrt{6} - \sqrt{2})\sin(x) = 2$$

$$\iff \frac{\sqrt{6} + \sqrt{2}}{4}\cos(x) + \frac{\sqrt{6} - \sqrt{2}}{4}\sin(x) = \frac{1}{2}$$

$$\iff \cos\left(\frac{\pi}{12}\right)\cos(x) + \sin\left(\frac{\pi}{12}\right)\sin(x) = \frac{1}{2}$$

$$\iff \cos\left(x - \frac{\pi}{12}\right) = \frac{1}{2}$$

$$\iff \cos\left(x - \frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3}\right)$$

$$\iff x - \frac{\pi}{12} \equiv \frac{\pi}{3}\left[2\pi\right] \text{ ou } x - \frac{\pi}{12} \equiv -\frac{\pi}{3}\left[2\pi\right]$$

$$\iff x \equiv \frac{5\pi}{12}\left[2\pi\right] \text{ ou } x \equiv -\frac{\pi}{4}\left[2\pi\right]$$

D'où l'ensemble des solutions est $\left\{ x \in \mathbb{R} \mid x \equiv \frac{5\pi}{12} [2\pi] \text{ ou } x \equiv -\frac{\pi}{4} [2\pi] \right\}$

Correction de l'exercice 2:

ATTENTION : l'équation n'est pas toujours de degré 2! Si m = -1, (E_{-1}) est une équation de degré 1, elle a donc une seule solution réelle.

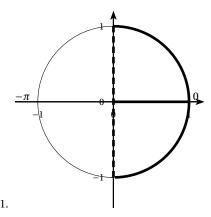
Si $m \neq -1$, on a bien une équation de degré 2. On calcule le discriminant : $\Delta = (m-1)^2 - 4(m+1)(1-m) = m^2 - 2m + 1 - 4(1-m^2) = 5m^2 - 2m - 3$. On étudie le signe de Δ selon la valeur de m en calculant le discriminant du discriminant : $\Delta' = 64$. Donc Δ s'annule pour $m = \frac{2 \pm 8}{10}$.

m	$-\infty$		$-\frac{3}{5}$		1		+∞
Δ		+	0	-	0	+	

On distingue les cas:

- si m = -1, l'équation (E_m) a une seule solution réelle;
- si $m \in]-\infty, -1[\cup]-1, -3/5[\cup]1, +\infty[$, l'équation (E_m) a deux solutions réelles;
- si $m \in \{-3/5, 1\}$, l'équation (E_m) a une seule solution réelle;
- si $m \in]-3/5, 1[$, l'équation (E_m) n'a pas de solution réelle.

Correction de l'exercice 3:



En s'aidant du cercle trigonométrique, $\cos(2x) > 0 \iff \exists k \in \mathbb{Z}$ tel que

$$-\frac{\pi}{2} + 2k\pi < 2x < \frac{\pi}{2} + 2k\pi$$

$$\iff -\frac{\pi}{4} + k\pi < x < \frac{\pi}{4} + k\pi$$

 $\text{Donc l'ensemble des solutions est} \boxed{ \left\{ x \in \mathbb{R} \mid \exists k \in \mathbb{Z}, \ -\frac{\pi}{4} + k\pi < x < \frac{\pi}{4} + k\pi \right\} = \bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right[}$

2. Pour tous réels *x* et *y* :

$$\sin(x+y)\sin(x-y) = \left(\sin(x)\cos(y) + \sin(y)\cos(x)\right)\left(\sin(x)\cos(y) - \cos(x)\sin(y)\right) \text{ (formules d'addition)}$$

$$= \sin^2(x)\cos^2(y) - \sin^2(y)\cos^2(x)$$

$$= \sin^2(x)\left(1 - \sin^2(y)\right) - \sin^2(y)\left(1 - \sin^2(x)\right) \text{ (on utilise ici } \cos^2 x + \sin^2 x = 1)$$

$$= \sin^2(x) - \sin^2(x)\sin^2(y) - \sin^2(y) + \sin^2(y)\sin^2(x)$$

$$= \sin^2(x) - \sin^2(y)$$

3. En utilisant la formule démontrée dans la question précédente :

$$\sin^{2}\left(x - \frac{\pi}{3}\right) - \sin^{2}\left(x - \frac{\pi}{6}\right) > 0$$

$$\iff \sin\left(x - \frac{\pi}{3} + x - \frac{\pi}{6}\right) \sin\left(x - \frac{\pi}{3} - x + \frac{\pi}{6}\right) > 0$$

$$\iff \sin\left(2x - \frac{\pi}{2}\right) \sin\left(-\frac{\pi}{6}\right) > 0$$

$$\iff \sin\left(\frac{\pi}{2} - 2x\right) \times \frac{\sqrt{3}}{2} > 0 \text{ (parité du sinus)}$$

$$\iff \cos(2x) > 0$$

Or, on a résolu cette inéquation dans la première question. Ainsi, l'ensemble des solutions est $\left[\bigcup_{k\in\mathbb{Z}}\right] - \frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \left[\bigcup_{k\in\mathbb{Z}}\right]$

Correction de l'exercice 4:

- 1. Non, par exemple on prend x = 1/2 et k = 2: on a 2|x| = 0 mais |kx| = 1.
- 2. (a) D'après la définition de la partie entière, $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$. En multipliant par n (qui est positif), on obtient :

$$n \lfloor x \rfloor \le nx < n \lfloor x \rfloor + n$$

(b) D'après l'encadrement précédent, et comme $n \lfloor x \rfloor$ est un entier, on a :

$$n \lfloor x \rfloor \le \lfloor nx \rfloor < n \lfloor x \rfloor + n$$

En divisant par n (qui est strictement positif) :

$$\lfloor x \rfloor \le \frac{\lfloor nx \rfloor}{n} < \lfloor x \rfloor + 1$$

Comme $\lfloor x \rfloor$ et $\lfloor x \rfloor + 1$ sont deux entiers successifs, on a $\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$

3. Comme $\lfloor x \rfloor \le x$, par croissance de la racine carrée, $\sqrt{\lfloor x \rfloor} \le \sqrt{x}$, et par croissance de la partie entière, $\boxed{\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor \le \left\lfloor \sqrt{x} \right\rfloor}$

On part ensuite de $\lfloor \sqrt{x} \rfloor \le \sqrt{x}$, donc $\lfloor \sqrt{x} \rfloor^2 \le x$ (croissance de la fonction carrée sur \mathbb{R}_+). Mais $\lfloor \sqrt{x} \rfloor^2$ est un entier inférieur ou égal à x, donc $\lfloor \sqrt{x} \rfloor^2 \le \lfloor x \rfloor$, puis par croissance de la racine carrée, $\lfloor \sqrt{x} \rfloor \le \sqrt{\lfloor x \rfloor}$. Comme $\lfloor \sqrt{x} \rfloor$ est un entier inférieur ou égal à $\sqrt{\lfloor x \rfloor}$, $\lfloor \sqrt{x} \rfloor \le \lfloor \sqrt{\lfloor x \rfloor} \rfloor$. Ainsi, $\lfloor \sqrt{x} \rfloor = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$.

Correction de l'exercice 5 :

- 1. Pour tout $a \in \mathbb{R}$, $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$ Pour tout $a \in \mathbb{R}$, $\sin(2a) = 2\cos(a)\sin(a)$.
- 2. Soit x une solution de $\sin(2^k x) = 0$. Alors $\sin(2^{k+1} x) = \sin(2 \times 2^k x) = 2\cos(2^k x)\sin(2^k x) = 0$, donc x est bien solution de $\sin(2^{k+1} x) = 0$.
- 3. x est solution de l'équation ssi il existe $k \in [0, n]$ tel que $\sin(2^k x) = 0$. D'après la question précédente, on a alors $\sin(2^n x) = 0$. Autrement dit, les solutions de l'équation $\sin(x)\sin(2x)\cdots\sin(2^n x) = 0$ sont les solutions de $\sin(2^n x) = 0$.

Or
$$\sin(2^n x) = 0 \iff 2^n x \equiv 0 \ [\pi] \iff x \equiv 0 \ \left[\frac{\pi}{2^n}\right] \iff \exists k \in \mathbb{Z} \ | \ x = \frac{k\pi}{2^n}.$$

On cherche les solutions dans $[0, 2\pi[$, donc on doit avoir $0 \le \frac{k\pi}{2^n} < 2\pi \iff 0 \le k < 2^{n+1}$.

Ainsi, l'ensemble des solutions est
$$S = \left\{ \frac{k\pi}{2^n}, k \in \{0, 1, \dots, 2^{n+1} - 1\} \right\}$$
.

4. Il y a autant de solutions que de k possibles. Or, il y a 2^{n+1} éléments dans l'ensemble $\{0,1,\ldots,2^{n+1}-1\}$.

Il y a donc
$$2^{n+1}$$
 solutions