Contrôle de cours 3 - Fonctions - Sujet A Mercredi 25 septembre 2024

Question 1 (2 pts)

Soit $f: I \to \mathbb{R}$.

1. Donner la définition de f est strictement croissante sur I:

f est strictement croissante sur I ssi $\forall x, y \in I$, si x < y alors f(x) < f(y).

2. Donner la définition de f est minorée sur I:

f est minorée sur I ssi $\exists m \in \mathbb{R} \mid \forall x \in I, f(x) \geq m$.

Question 2 (3 pts)

Soit $f: I \to \mathbb{R}$ et $a \in I$.

- 1. Donner la définition de f est dérivable en a. f est dérivable en a ssi la limite de $\frac{f(a+h)-f(a)}{h}$ lorsque $h\to 0$ existe et est finie.
- 2. On suppose que f est dérivable en a. L'équation de la tangente à \mathscr{C}_f en a est : y = f'(a)(x-a) + f(a).

Question 3 (2 pts)

Énoncer le théorème des valeurs intermédiaires.

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue. Pour tout y comprise ntre f(a) et f(b), il existe un $c \in [a, b]$ tel que f(c) = y.

Question 4 (4 pts)

- 1. Déterminer proprement la limite lorsque $x \to +\infty$ de $\frac{\sin(x)}{x}$.

 Pour tout x > 0, $-1 \le \sin(x) \le 1$, donc $\frac{-1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$. Comme $\frac{1}{x} \xrightarrow{x \to +\infty} 0$, par encadrement, $\frac{\sin(x)}{x} \xrightarrow{x \to +\infty} 0$
- 2. Déterminer l'ensemble de dérivabilité et dériver $f: x \mapsto \sqrt{\ln(1+3x)-1}$ On doit avoir 1+3x>0, c'est-à-dire $x>-\frac{1}{3}$ et $\ln(1+3x)-1>0$, c'est-à-dire $\ln(1+3x)>1$ donc $1+3x>e^1$ et $x>\frac{e^1-1}{3}$. Donc f est dérivable sur $I=\left]\frac{e^1-1}{3},+\infty\right[$. De plus, on pose $u: x\mapsto \ln(1+3x)-1$ dont la dérivée est $u': x\mapsto \frac{3}{1+3x}$. Pour tout $x\in I$, $f'(x)=\frac{u'(x)}{2\sqrt{u(x)}}=\frac{3}{2(1+3x)\sqrt{\ln(1+3x)-1}}$.

Contrôle de cours 3 - Fonctions - Sujet B Mercredi 25 septembre 2024

Question 1 (2 pts)

Soit $f: I \to \mathbb{R}$.

1. Donner la définition de f est strictement décroissante sur I :

f est strictement croissante ssi $\forall x, y \in I$, si x < y alors f(x) > f(y).

2. Donner la définition de f est majorée sur I:

f est majorée sur I ssi $\exists M \in \mathbb{R} \mid \forall x \in I, f(x) \leq M$.

Question 2 (3 pts)

Soit $f: I \to \mathbb{R}$ et $a \in I$.

- 1. Donner la définition de f est dérivable en a. f est dérivable en a ssi la limite de $\frac{f(a+h)-f(a)}{h}$ lorsque $h\to 0$ existe et est finie.
- 2. On suppose que f est dérivable en a. L'équation de la tangente à \mathscr{C}_f en a est : y = f'(a)(x-a) + f(a).

Question 3 (2 pts)

Énoncer le théorème des valeurs intermédiaires.

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue. Pour tout y comprise ntre f(a) et f(b), il existe un $c \in [a, b]$ tel que f(c) = y.

Question 4 (4 pts)

- 1. Déterminer proprement la limite lorsque $x \to +\infty$ de $\frac{\cos(x)}{x}$. Pour tout x > 0, $-1 \le \cos(x) \le 1$, donc $\frac{-1}{x} \le \frac{\cos(x)}{x} \le \frac{1}{x}$. Comme $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$, par encadrement, $\frac{\cos(x)}{x} \xrightarrow[x \to +\infty]{} 0$.
- 2. Déterminer l'ensemble de dérivabilité et dériver $f: x \mapsto \sqrt{\ln(1+2x)-1}$ On doit avoir 1+2x>0, c'est-à-dire $x>-\frac{1}{2}$ et $\ln(1+2x)-1>0$, c'est-à-dire $\ln(1+2x)>1$ donc $1+2x>e^1$ et $x>\frac{e^1-1}{2}$. Donc f est dérivable sur $I=\left]\frac{e^1-1}{2},+\infty\right[$. De plus, on pose $u:x\mapsto \ln(1+2x)-1$ dont la dérivée est $u':x\mapsto \frac{2}{1+2x}$. Pour tout $x\in I$, $f'(x)=\frac{u'(x)}{2\sqrt{u(x)}}=\frac{2}{2(1+2x)\sqrt{\ln(1+2x)-1}}$.