Chapitre 8 : Équations différentielles linéaires

On note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , cela dépend du contexte.

I. Vocabulaire

Définition I.1. On appelle équation différentielle linéaire

• d'ordre 1 une équation différentielle du type :

$$\alpha(t) \gamma' + \beta(t) \gamma = \gamma(t) \tag{E_1}$$

où α , β et γ sont des fonctions à valeurs dans \mathbb{K} et définies sur un même intervalle I. Une solution est une fonction $y: I \to \mathbb{K}$ dérivable vérifiant $\alpha(t)y'(t) + \beta(t)y(t) = \gamma(t)$ pour tout $t \in I$.

• d'ordre 2 à coefficients constants une équation différentielle du type :

$$ay'' + by' + cy = f(t)$$
 (E₂)

où $a \in \mathbb{K}^*$, et $b, c \in \mathbb{K}$ et $f: I \to \mathbb{K}$ est une fonction continue. Une solution est une fonction $y: I \to \mathbb{K}$ dérivable deux fois vérifiant ay''(t) + by'(t) + cy(t) = f(t) pour tout $t \in I$.

Définition I.2. On appelle équation différentielle homogène associée à

• l'équation (E₁) l'équation

$$\alpha(t)y' + \beta(t)y = 0 \tag{H_1}$$

• l'équation (E2) l'équation

$$ay'' + by' + cy = 0 \tag{H_2}$$

Proposition I.1. Si y_1 et y_2 sont deux solutions de (H_1) (resp. de (H_2)), alors pour tous $\lambda, \mu \in \mathbb{K}$, $\lambda y_1 + \mu y_2$ est aussi solution de (H_1) (resp. de (H_2)).

II. L'ordre 1

Pour résoudre une équation différentielle linéaire d'ordre 1, on commence par se ramener à une EDL normalisée du type

$$y' + a(t)y = b(t)$$
 (EN₁)

en divisant par $\alpha(t)$ (en faisant attention aux points où α s'annule).

L'équation homogène associée est

$$y' + a(t)y = 0. (HN1)$$

II.1. Résolution de l'équation homogène

Proposition II.1. Soit $A: I \to \mathbb{K}$ une primitive de a. L'ensemble des solutions de l'équation (HN_1) est :

$$S_0(I) = \left\{ t \in I \mapsto C e^{-A(t)} \in \mathbb{K} \mid C \in \mathbb{K} \right\}.$$

Remarque II.1. Lorsque a(t) est constante, les solutions sont de la forme $t \mapsto Ce^{-at}$.

II.2. Solution de l'équation avec second membre

Proposition II.2. Soient y_1 et y_2 deux solutions de (EN_1) : y' + a(t)y = b(t). Alors $y_2 - y_1 \in S_0(I)$. Ainsi, si y_P est une solution particulière de (EN_1) , alors l'ensemble des solutions de (EN_1) est:

$$S(I) = \{ y_P + y_H \mid y_H \in S_0(I) \}.$$

II.3. Recherche de solutions particulières

On a le principe de superposition qui permet de couper le second membre en morceaux plus simples.

Proposition II.3. Si y_1 est solution $de(E_1)$: $y' + a(t)y = b_1(t)$ et y_2 est solution $de(E_2)$: $y' + a(t)y = b_2(t)$, alors $y_1 + y_2$ est solution $de(E_{1+2})$: $y' + a(t)y = b_1(t) + b_2(t)$.

Démonstration. Comme
$$y_1' + ay_1 = b_1$$
 et $y_2' + ay_2 = b_2$, $(y_1 + y_2)' + a(y_1 + y_2) = b_1 + b_2$.

Il y a ensuite deux méthodes pour trouver une solution particulière : la première consiste à trouver une solution évidente, mais ne fonctionne pas toujours!

Sinon, on cherche une solution particulière de la forme $y_P(t) = C(t) e^{-A(t)}$. On fait **varier la constante**. On remplace y_P dans (EN_1) :

$$y'_{P} + a(t)y_{P} = b(t)$$

$$\iff C'(t)e^{-A(t)} - C(t)a(t)e^{-A(t)} + a(t)C(t)e^{-A(t)} = b(t)$$

$$\iff C'(t)e^{-A(t)} = b(t)$$

$$\iff C'(t) = b(t)e^{A(t)}$$

Il « suffit » de trouver une primitive de b(t) e A(t).

II.4. Problème de Cauchy

Définition II.1. On appelle problème de Cauchy un système du type :

$$\begin{cases} y' + a(t)y = b(t) \\ y(t_0) = y_0 \end{cases}$$

où $t_0 \in I$ et $y_0 \in \mathbb{K}$ sont fixés.

Théorème II.4 (Cauchy-Lipschitz linéaire)

Soient $a, b: I \to \mathbb{K}$ continues, $t_0 \in I$ et $y_0 \in \mathbb{K}$.

Le problème de Cauchy
$$\begin{cases} y' + a(t)y = b(t) \\ y(t_0) = y_0 \end{cases}$$
 admet une et une seule solution sur I.

III. L'ordre 2

III.1. Résolution de l'équation homogène

Définition III.1. L'équation $aX^2 + bX + c = 0$ est l'**équation caractéristique** de (E_2).

Proposition III.1. Soit $r \in \mathbb{K}$. La fonction $f: x \mapsto e^{rx}$ est solution de (H_2) ssi r est solution de l'équation caractéristique associée.

Si de plus r est solution double de l'équation caractéristique, alors $x \mapsto x e^{rx}$ est aussi solution de (H_2) .

Proposition III.2 (EDL d'ordre 2 **avec** $\mathbb{K} = \mathbb{C}$). On note Δ le discriminant de l'équation caractéristique de (\mathbf{E}_2). L'ensemble des solutions à valeurs complexes de (\mathbf{H}_2) sont :

- 1. $Si \Delta = 0$: $S_0 = \{t \mapsto (Ct + D) e^{r_0 t} \mid C, D \in \mathbb{C} \}$, où r_0 est la racine double de l'équation caractéristique.
- 2. $Si \Delta \neq 0$: $S_0 = \{t \mapsto C_1 e^{r_1 t} + C_2 e^{r_2 t} \mid C_1, C_2 \in \mathbb{C} \}$, où r_1 et r_2 sont les deux racines de l'équation caractéristique.

Proposition III.3 (EDL d'ordre 2 **avec** $\mathbb{K} = \mathbb{R}$ **).** *Soit* Δ *le discriminant de l'équation caractéristique (avec a, b, c* $\in \mathbb{R}$ *). L'en*semble des solutions de (H_2) à valeurs dans \mathbb{R} sont :

- 1. $Si \Delta = 0$: $S_0 = \{t \mapsto (Ct + D) e^{r_0 t} \mid C, D \in \mathbb{R} \}$, où r_0 est la racine double de l'équation caractéristique.
- 2. $Si \Delta > 0$: $S_0 = \{t \mapsto C_1 e^{r_1 t} + C_2 e^{r_2 t} \mid C_1, C_2 \in \mathbb{R} \}$, où r_1 et r_2 sont les deux racines de l'équation caractéristique.
- 3. $Si \Delta < 0$: $S_0 = \{t \mapsto (C_1 \cos(\omega t) + C_2 \sin(\omega t)) e^{\alpha t} \mid C_1, C_2 \in \mathbb{R}\} = \{t \mapsto A \cos(\omega t \varphi) e^{\alpha t}, A, \varphi \in \mathbb{R}\}, \text{ où } r = \alpha + i\omega \text{ et } r = 0\}$ $\overline{r} = \alpha - i\omega \ (\alpha, \omega \in \mathbb{R})$ sont les deux racines complexes conjuguées de l'équation caractéristique.

Exemple III.1. Un exemple important qui apparaît souvent en physique : l'équation $\frac{\mathrm{d}^2 u}{\mathrm{d} t^2} + \omega_0^2 u = 0$, d'inconnue u. L'équation caractéristique associée est $X^2 + \omega_0^2 = 0$ dont les solutions sont $\pm i\omega_0$. Ainsi, les solutions de l'équation sont :

- sur \mathbb{C} : $u(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$, $C_1, C_2 \in \mathbb{C}$;
- $\operatorname{sur} \mathbb{R} : u(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t), C_1, C_2 \in \mathbb{R};$

III.2. Solution de l'équation avec second membre

Proposition III.4. Soient y_1 et y_2 deux solutions de (\mathbf{E}_2) : ay'' + by' + cy = f(t). Alors $y_2 - y_1 \in S_0(I)$. Ainsi, si y_P est une solution particulière de (E_2) , alors l'ensemble des solutions de (E_2) est :

$$S(I) = \{ \gamma_P + \gamma_H \mid \gamma_H \in S_0(I) \}.$$

III.3. Recherche de solutions particulières

On a toujours le principe de superposition.

Proposition III.5 (Principe de superposition). Si y_1 est solution de $ay'' + by' + cy = f_1(t)$ et y_2 est solution de $ay'' + by' + cy = f_1(t)$ et $ay + by' + cy = f_1(t)$ $by' + cy = f_2(t)$, alors $y_1 + y_2$ est solution de $ay'' + by' + cy = f_1(t) + f_2(t)$.

Méthode. • Lorsque f(t) est une constante, on cherche une solution particulière de (E_2) sous la forme d'une constante.

- lorsque $f(t) = Ae^{\lambda t}$, où $(\lambda, A) \in \mathbb{C}^2$, on cherche γ_P sous la forme :
 - $\triangleright v_P(t) = B e^{\lambda t}$ si λ n'est pas solution de l'équation caractéristique;
 - $\triangleright v_P(t) = Bt e^{\lambda t}$ si λ est une solution simple de l'équation caractéristique;
 - $\triangleright v_P(t) = Bt^2 e^{\lambda t}$ si λ est une solution double de l'équation caractéristique.
- lorsque $f(t) = A\cos(\omega t)$ (ou $f(t) = A\sin(\omega t)$), avec $(A, \omega) \in \mathbb{R}^2$,
 - 1. on cherche une solution particulière y_P en remplaçant f par $g(t) = Ae^{i\omega t}$;
 - 2. on met y_P sous forme algébrique : $y_P(t) = y_1(t) + iy_2(t)$;
 - 3. y_1 (resp. y_2) est la solution particulière cherchée.

III.4. Problème de Cauchy

Définition III.2. On appelle problème de Cauchy un système du type :

$$\begin{cases} ay'' + by' + cy = f(t) \\ y(t_0) = y_0 \text{ et } y'(t_0) = y'_0 \end{cases}$$

Théorème III.6 (Cauchy-Lipschitz linéaire)

Soient $a, b, c \in \mathbb{K}$ avec $a \neq 0$. Soit $f: I \to \mathbb{K}$ continue, $t_0 \in I$ et $y_0, y_0' \in \mathbb{K}$. Le problème de Cauchy $\begin{cases} ay'' + by' + cy = f(t) \\ y(t_0) = y_0 \text{ et } y'(t_0) = y_0' \end{cases}$ admet une et une seule solution sur I.