Suites numériques

Prérequis

Suites récurrentes. Suites arithmétiques. Suites géométriques.

Calcul de termes

Calcul 21.1 — Suite explicite. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ u_n=\frac{2n+3}{5}\times 2^{n+2}$. Calculer :	0000
a) u_0	
b) u_1	
Calcul 21.2 — Suite récurrente.	0000
On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $\forall n\in\mathbb{N},\ u_{n+1}=2u_n+3$. Calculer :	
a) son troisième terme	
Calcul 21.3 — Suite récurrente.	0000
On définit la suite $(v_n)_{n\geqslant 1}$ par $v_1=\sqrt{2}$ et $\forall n\geqslant 1,\ v_{n+1}=\sqrt{v_n}$. Calculer :	
a) v_3	
Calcul 21.4 — Suite récurrente.	0000
On définit la suite $(w_n)_{n\in\mathbb{N}}$ par $w_0=2$ et $\forall n\in\mathbb{N},\ w_{n+1}=\frac{1}{2}w_n^2$. Calculer :	
a) w_2	
Calcul 21.5 — Suite explicite.	0000
Soit la suite $(t_n)_{n\geqslant 1}$ définie par $\forall n\in\mathbb{N},\ t_n=\ln\left(\frac{n^n}{2^n}\right)$. Calculer, pour $n\in\mathbb{N}^*$:	
a) t_{2n}	
Suites arithmétiques et géométriques	
Calcul 21.6 — Suite arithmétique. La suite $(a_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison 2. Calculer :	0000
a) a_{10}	
b) $s_{100} = a_0 + a_1 + \ldots + a_{99} \ldots$ d) $s_{101} = a_0 + a_1 + \ldots + a_{100} \ldots$	

Calcul 21.7 — Suite arithmétique.	0000
La suite $(b_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison r vérifiant que $b_{101}=\frac{2}{3}$ et $b_{103}=\frac{3}{4}$. Calculer	r :
a) b_{102}	
Calcul 21 8 Suita géamétrique	0000
Calcul 21.8 — Suite géométrique.	0000
La suite $(g_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme $g_0=3$ et de raison $\frac{1}{2}$. Calculer :	
a) Son dixième terme est :	
b) $\sigma_{10} = g_0 + g_1 + \ldots + g_9 \ldots$ d) $\sigma_{11} = g_0 + g_1 + \ldots + g_{10} \ldots$	
Calcul 21.9 — Suite géométrique.	0000
La suite $(h_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q>0$ vérifiant que $h_{11}=\frac{5\pi}{11}$ et $h_{13}=\frac{11\pi}{25}$.	Calculer:
a) h_{12}	
Suites récurrentes sur deux rangs	
Calcul 21.10	0000
Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2,\ u_1=1$ et $\forall n\in\mathbb{N},\ u_{n+2}=u_{n+1}+6u_n$. Calculer :	
a) u_n	
Calcul 21.11	0000
Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_0=0,\ v_1=\sqrt{2}$ et $\forall n\in\mathbb{N},\ v_{n+2}=2v_{n+1}+v_n$. Calculer :	
a) v_n	
Calcul 21.12 — Suite de Fermat.	0000
Soit la suite $(F_n)_{n\geqslant 0}$ définie par $\forall n\in\mathbb{N},\ F_n=2^{2^n}+1$. Calculer :	
a) F_3	

f) $F_{n+1}^2 - 2(F_n - 1)^2$

c) $(F_{n-1}-1)^2+1$