Mathématiques - PCSI2

Colles 15 - 20/01/2025 au 24/01/2025

Thèmes traités en classe

- Chapitre 14 : Suites numériques.
 - ▶ Variations, bornétude, opérations.
 - ▶ Exemples : suites arithmético-géométriques, suites d'ordre 2.
 - \triangleright Étude de suites du type $u_{n+1} = f(u_n)$.
 - ▶ Limite d'une suite, unicité de la limite, toute suite convergente est bornée.
 - > Opérations sur les limites.
 - > Suites extraites et limites.
 - ▶ Limites et inégalités.
 - ▶ Théorème d'encadrement.
 - ▶ Théorème de la limite monotone.
 - ▶ Théorème des suites adjacentes.
 - ▶ Comparaison de suites : domination, négligeabilité, équivalence.

Exercices traités en classe : I.1, I.2 I.3, I.4, I.5, I.8, I.9, I.10, I.13, II.3, II.4, II.5, II.6, II.7, II.8, II.9, II.10, II.15, II.14, II.12, II.17, II.18, II.19, II.20, II.21

- Chapitre 15: Calcul matriciel.
 - 1. Combinaisons linéaires de matrices.
 - 2. Produit matriciel, puissances de matrices carrées, Newton.
 - 3. Matrices élémentaires.

Exercices traités en classe: 1, 2, 3.

Questions de cours

- Toute suite convergente est bornée : énoncé et démonstration.
- Soit (u_n) une suite réelle qui tend vers $\ell > 0$. Alors $u_n > 0$ à partir d'un certain rang. Démonstration lorsque $\ell \in \mathbb{R}$.
- Si (u_{2n}) et (u_{2n+1}) tendent vers la même limite ℓ , alors (u_n) tend aussi vers ℓ . Démonstration lorsque $\ell \in \mathbb{R}$.
- Énoncer le théorème d'encadrement. Démontrer le cas où la suite est majorée par une suite qui tend vers −∞.
- Énoncer et démontrer le théorème de la limite monotone dans le cas croissant.
- C14 Exercice II.10 : Montrer que la suite (H_n) définie par $H_n = \sum_{k=1}^n \frac{1}{k}$ vérifie $\forall n \in \mathbb{N}^*$, $H_{2n} H_n \ge \frac{1}{2}$. En déduire que $H_n \to +\infty$.
- C14 Exercice II.15 : On définit la suite $(L_n)_{n \in \mathbb{N}^*}$ par son terme général $L_n = \sum_{k=1}^n \frac{(-1)^k}{k}$. Montrer que les suites (L_{2n}) et (L_{2n+1}) sont adjacentes, puis en déduire la nature de la suite (L_n) .
- Sur demande, pour les plus motivés : C14 Exercice II.5 : soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ qui converge vers $\ell \in \mathbb{C}$. Montrer que $\frac{1}{n} \sum_{k=1}^n u_k \to \ell$.
- C14 Exercice II.14 : Soit (u_n) une suite numérique et $k \in]0,1[$. On suppose que pour tout $n \in \mathbb{N}$, $|u_{n+1}| \le k|u_n|$. Montrer que (u_n) converge vers 0.
- Définition de domination, négligeabilité, équivalence. Montrer que $n! = o(n^n)$.
- C14 Exercice II.19 : Pour tout $n \ge 2$, on pose $u_n = -\ln(n) + \sum_{k=1}^{n-1} \frac{1}{k}$ et $v_n = -\ln(n) + \sum_{k=1}^{n} \frac{1}{k}$. Montrer que (u_n) et (v_n) sont adjacentes. En déduire un équivalent de $\sum_{k=1}^{n} \frac{1}{k}$ lorsque $n \to +\infty$.
- Définition du produit matriciel : avec la formule et avec un dessin. Calcul du produit de deux matrices élémentaires : avec un dessin puis avec la formule.

LAS - Le Raincy Programme de colles 20/01/2025 au 24/01/2025

Mathématiques - PCSI2

A savoir faire

- 1. Étudier la monotonie d'une suite.
- 2. Savoir déterminer le terme général d'une suite arithmético-géométrique et d'une suite récurrente d'ordre 2.
- 3. Savoir utiliser l'étude des fonctions f et $x \mapsto f(x) x$ pour étudier la monotonie de $u_{n+1} = f(u_n)$.
- 4. Connaître les définitions de $u_n \to \ell$ et $u_n \to \pm \infty$.
- 5. Savoir appliquer proprement les théorèmes d'encadrement et de la limite monotone.
- 6. Savoir encadrer une somme en utilisant le plus petit terme et le plus grand terme.
- 7. Savoir montrer que deux suites sont adjacentes.
- 8. Savoir trouver un équivalent simple d'une suite et en déduire une limite.
- 9. Savoir calculer un produit matriciel.
- 10. Savoir calculer les puissances d'une matrice :
 - (a) en conjecturant une formule démontrée par récurrence,
 - (b) en appliquant Newton.

LAS - Le Raincy Programme de colles 20/01/2025 au 24/01/2025