Devoir sur temps libre 7

(À remettre le LUNDI 28 AVRIL 2025)

Exercice 1 (Des boules).

Une urne contient n boules numérotées de 1 à n. On en choisit 3 au hasard et simultanément.

- 1. Quel est, en fonction de *n*, le nombre de tirages possibles?
- 2. Dans le cas où n = 9, calculer le nombre de tirages où le plus petit numéro est 4.
- 3. On fixe un entier $k \in \{1, ..., n-2\}$. Quel est le nombre de tirages où le plus petit numéro est k?
- 4. En déduire que $\sum_{k=1}^{n-2} {n-k \choose 2} = {n \choose 3}$ pour $n \ge 3$.

Exercice 2 (Des boules de couleur pour changer).

Une urne contient quatre boules rouges, quatre boules blanches et quatre boules noires. On tire simultanément quatre boules dans l'urne.

- 1. On suppose dans un premier temps que les boules d'une même couleur sont indiscernables.
 - (a) Combien y a-t-il de tirages unicolores différents?
 - (b) Combien y a-t-il de tirages bicolores différents?
 - (c) Combien y a-t-il de tirages tricolores différents?
- 2. On suppose maintenant que les boules de chaque couleur sont numérotés de 1 à 4.
 - (a) Combien y a-t-il de tirages unicolores différents?
 - (b) Combien y a-t-il de tirages bicolores différents?
 - (c) Combien y a-t-il de tirages tricolores différents?

Exercice 3 (Lagrange pour changer).

Soit $n \ge 1$ et $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ où les a_i sont deux à deux distincts. On pose pour tout $i \in [0, n]$:

$$L_{i} = \frac{\prod_{j=0, j\neq i}^{n} (X - a_{j})}{\prod_{\substack{i=0, j\neq i}}^{n} (a_{i} - a_{j})} \quad \text{et} \quad \pi_{i} = \prod_{\substack{j=0 \ j\neq i}}^{n} (a_{i} - a_{j}).$$

- 1. Dans cette question, on prend n = 3 et $a_0 = -1$, $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$. Expliciter L_0 , L_1 , L_2 et L_3 sous forme factorisée.
- 2. Soit $i \in [0, n]$. Déterminer le degré et le coefficient dominant de L_i .
- 3. Soit $i, k \in [0, n]$. Calculer $L_i(a_k)$.
- 4. Montrer que la famille $\mathcal{L} = (L_0, L_1, ..., L_n)$ est une base de $\mathbb{R}_n[X]$.
- 5. Soit $P \in \mathbb{R}_n[X]$. Justifier que les coordonnées de P dans la base \mathcal{L} sont $(P(a_0), P(a_1), \dots, P(a_n))$.

Dans la fin de l'exercice on pose pour tout $i \in [0, n]$, $a_i = i$.

- 6. Montrer que pour tout $i \in [0, n]$, le coefficient dominant de L_i est $\frac{(-1)^{n-i}}{n!} \binom{n}{i}$.
- 7. Justifier qu'il existe un unique polynôme $R \in \mathbb{R}_n[X]$ tel que : $\forall i \in [0, n]$, $R(i) = i^n$.
- 8. Donner deux expressions de R et en déduire une simplification de : $\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} i^n$.

Exercice 4 (Des matrices).

Soit $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées 2×2 à coefficients réels. On note :

- F l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ dont la somme des coefficients diagonaux est nulle;
- $G = \{A \in \mathcal{M}_2(\mathbb{R}) / \forall M \in \mathcal{M}_2(\mathbb{R}), AM = MA\}$
- $E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ puis déterminer une base de F.
- 2. (a) Donner deux matrices simples de G.

- (b) Montrer que G est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- (c) Soit $A \in \mathcal{M}_2(\mathbb{R})$. Montrer que A appartient à G si et seulement si :

$$\forall (i, j) \in [1, 2]^2, \quad AE_{ij} = E_{ij}A.$$

(d) Soit
$$A = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$

Calculer AE_{ij} et $E_{ij}A$ pour tout $(i, j) \in [1, 2]^2$.

- (e) En déduire que A est de la forme $\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$.
- (f) Donner une base de *G*.
- 3. Montrer que F et G sont supplémentaires dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 5 (On choisit pas sa famille).

Soit $E = \mathbb{R}^{\mathbb{R}}$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . Pour $k \in \mathbb{N}$, on définit $f_k : x \mapsto e^{kx}$.

- 1. (a) Soit $P \in \mathbb{R}[X]$ un polynôme tel que $\forall x \in \mathbb{R}_+^*$, P(x) = 0. Que peut-on dire de P?
 - (b) Montrer que pour tout $n \in \mathbb{N}$, la famille $(f_0, f_1, ..., f_n)$ est libre. *On pourra utiliser la question précédente.*
 - (c) L'espace vectoriel *E* est-il de dimension finie? Justifier.
- 2. Soit $n \in \mathbb{N}$. On note $F = \text{Vect}(f_0, ..., f_n)$.
 - (a) Quelle est la dimension de *F*?
 - (b) Montrer que la fonction cosinus hyperbolique n'est pas un élément de F. On pourra raisonner par l'absurde et regarder une limite bien choisie.
 - (c) Quelle est la dimension de Vect(ch, $f_0, ..., f_n$)?

Exercice 6 (Pile je gagne). On lance un pièce truquée qui a probabilité $\frac{2}{3}$ de donner pile. Les lancers sont successifs et indépendants.

Pour répondre aux questions suivantes, on introduira les événements nécessaires pour justifier.

- 1. Quelle est la probabilité qu'on obtienne deux piles aux deux premiers lancers?
- 2. Quelle est la probabilité d'obtenir *FFP* lors des trois premiers lancers?
- 3. Quelle est la probabilité d'obtenir *PPFF* lors des quatre premiers lancers?
- 4. Calculer la probabilité conditionnelle d'obtenir pile au deuxième lancer sachant qu'on a obtenu un pile et deux faces (pas forcément dans cet ordre) lors des trois premiers lancers.
- 5. Pour tout $n \ge 2$, on note A_n : « on obtient pour la première fois deux piles successifs aux lancers numéros n-1 et n » et on pose $a_n = P(A_n)$.
 - (a) Déterminer les valeurs de a_2 , a_3 et a_4 .
 - (b) En distinguant suivant le résultat du premier lancer, montrer que pour tout $n \ge 2$, $a_{n+2} = \frac{1}{3}a_{n+1} + \frac{2}{9}a_n$.
 - (c) Déterminer l'expression de a_n en fonction de $n \ge 2$.
 - (d) Calculer $\lim_{n \to +\infty} \sum_{k=2}^{n} a_k$ et interpréter le résultat.