Applications linéaires - Exercices

I. Linéarité, noyau, image

Exercice I.1. Dans chacun des cas suivants, l'application f est-elle linéaire?

1.
$$f(x, y) = (x + 2y, -x - y)$$

2.
$$f(x, y, z, t) = (x - 2z, 3t, x + y + t)$$

3.
$$f(x, y, z) = (z + y, xy, x)$$

3.
$$f(x, y, z) = (z + y, xy, x)$$

4. $f(x, y, z) = (x + y, z, 1 + y + z)$

1. Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = f(1) \}$. Montrer que F est un sev de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

2. Retrouver le résultat de la question précédente à l'aide de l'application $\phi : \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ définie par $\phi(f) = f(1) - f(0)$.

Exercice I.3. Dans chacun des cas suivants, montrer que φ est linéaire.

1.
$$\varphi: \begin{cases} \mathscr{F}([0,1],\mathbb{R}) \to \mathbb{R} \\ f \mapsto f(0) \end{cases}$$

2.
$$\varphi: \left\{ \begin{array}{ccc} \mathbb{C}[X] & \to & \mathbb{C}[X] \\ P & P' \end{array} \right.$$

2.
$$\varphi : \begin{cases} \mathbb{C}[X] \to \mathbb{C}[X] \\ P \mapsto P' \end{cases}$$

3. $\varphi : \begin{cases} \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{3} \\ (u_{n})_{n \in \mathbb{N}} \mapsto (u_{0}, u_{1}, u_{2}) \end{cases}$

4.
$$\varphi: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM - MA \end{array} \right.$$
, où $A \in \mathcal{M}_n(\mathbb{R})$ est fixée.

5. $\varphi: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & R \end{array} \right.$, où R est le reste de la divi-

5.
$$\varphi : \begin{cases} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & R \end{cases}$$
, où R est le reste de la division euclidienne de P par $X^2 + 1$.

Exercice I.4. Montrer que les applications suivantes sont linéaires, puis en déterminer le noyau et l'image.

1.
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (x,y) & \mapsto & (4x,y-x,2x+y) \end{array} \right.$$

2.
$$g: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \rightarrow & \mathbb{R}^2 \\ (x, y, z) & \mapsto & (2x + y - z, x - y) \end{array} \right.$$

Exercice I.5. Soit $u: \mathcal{C}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}(\mathbb{R}, \mathbb{R})$ qui à la fonction $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ associe la fonction $u(f): x \mapsto x f(x)$. Montrer que u est linéaire puis étudier son injectivité et sa surjectivité.

Exercice I.6. 1. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- (a) Montrer que $\ker(f) \subset \ker(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$.
- (b) Montrer que $g \circ f = 0_{\mathcal{L}(E)} \iff \operatorname{Im} f \subset \ker g$.
- 2. Soit *E* un \mathbb{K} -ev et $f \in \mathcal{L}(E)$ telle que $f^2 3f + 2id_E = 0$.
 - (a) Montrer que f est un automorphisme.
 - (b) Montrer que $\operatorname{Im}(f \operatorname{id}_E) \subset \ker(f 2\operatorname{id}_E)$ et $\operatorname{Im}(f 2\operatorname{id}_E) \subset \ker(f \operatorname{id}_E)$.
 - (c) Montrer que $E = \ker(f \mathrm{id}_E) \oplus \ker(f 2\mathrm{id}_E)$.

Exercice I.7. Soit $u \in \mathcal{L}(E)$.

- 1. Montrer que : $\ker(u) = \ker(u^2) \iff \ker(u) \cap \operatorname{Im}(u) = \{0_E\}.$
- 2. Montrer que : $Im(u) = Im(u^2) \iff ker(u) + Im(u) = E$.

Exercice I.8. Soient f et g deux endomorphisme d'un espace vectoriel E qui commutent. Montrer que $\ker(f)$ et $\operatorname{Im}(f)$ sont stables par g.

Exercice I.9. Soit *E* un espace vectoriel et *F*, *G* deux sev de *E*. Soit $u \in \mathcal{L}(E)$. Montrer que :

$$u(F) = u(G) \iff F + \ker(u) = G + \ker(u).$$

1. Pour tout $P \in \mathbb{R}_2[X]$, on définit $\phi(P) = XP' - P$.

- (a) Vérifier que ϕ est un endomorphisme de $\mathbb{R}_2[X]$.
- (b) Déterminer le noyau et l'image de ϕ .
- (c) Vérifier que $\ker(\phi) \oplus \operatorname{Im}(\phi) = \mathbb{R}_2[X]$.
- (d) Est-ce que ϕ est un projecteur? une symétrie?
- 2. Pour tout $P \in \mathbb{R}_3[X]$, on définit f(P) = P + (1 X)P'.
 - (a) Vérifier que f est un endomorphisme de $\mathbb{R}_3[X]$.
 - (b) Déterminer le noyau de f.

II. Homothéties, projecteurs, symétries

Exercice II.1. 1. Soit $E = \mathbb{R}^3$. On note $\vec{v} = (-1, 1, 2)$, $D = \text{Vect}(\vec{v})$ et P = ker(f), où f est la forme linéaire définie sur E par f(x, y, z) = x + 2y - z.

- (a) Montrer que *P* et *D* sont en somme directe.
- (b) Justifier que *P* et *D* sont supplémentaires.
- (c) Déterminer l'expression des projections $\pi_{D,P}$ et $\pi_{P,D}$.
- 2. Soient $F = \{P \in \mathbb{R}_2[X] \mid P(1) = 0\}$ et $G = \{P \in \mathbb{R}_2[X] \mid P'(1) = P''(1) = 0\}$.
 - (a) Montrer que F et G sont deux sev supplémentaires de $\mathbb{R}_2[X]$.
 - (b) Déterminer le projeté du polynôme $X^2 + X + 1$ sur F parallèlement à G, puis son symétrique par rapport à F parallèlement à G.

Exercice II.2. 1. Soit $p: \mathbb{R}^3 \to \mathbb{R}^3$ définie par p(x, y, z) = (-5x + 10y - 10z, -6x + 11y - 10z, -3x + 5y - 4z).

- (a) Montrer que *p* est linéaire.
- (b) Montrer que p est une projection sur un sev F parallèlement à un sev G et déterminer F et G.
- 2. Soit $s: \mathbb{R}^3 \to \mathbb{R}^3$ définie par s(x, y, z) = (x, -2x + y + 2z, 2x z).
 - (a) Montrer que s est linéaire.
 - (b) Montrer que s est une symétrie par rapport à un sev F parallèlement à un sev G et déterminer F et G.

Exercice II.3. 1. Soit $n \ge 1$. Montrer que $\mathcal{M}_n(\mathbb{K}) = \mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$ en utilisant une symétrie bien choisie.

2. Soit $I = \{f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ est impaire}\}\$ et $P = \{f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ est paire}\}\$. En utilisant une symétrie, montrer que $\mathbb{R}^{\mathbb{R}} = P \oplus I$.

Exercice II.4. Soit $f \in \mathcal{L}(E)$ et $p = \frac{1}{2}(\mathrm{id}_E + f)$. Montrer que p est un projecteur ssi f est une symétrie.

Exercice II.5. Soit E un \mathbb{K} -ev, $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

- 1. Montrer que pour tout $x \in E$, $x \in \ker(f \lambda \operatorname{id}_E) \iff f(x) = \lambda x$.
- 2. On pose $E_{\lambda} = \ker(f \lambda \operatorname{id}_{E})$. Justifier que E_{λ} est stable par f.
- 3. Que dire de $f_{|E_1}$?

Exercice II.6. Soit p un projecteur de E et $u \in \mathcal{L}(E)$. Montrer que si $u \circ p + p \circ u = 0_{\mathcal{L}(E)}$, alors $u \circ p = p \circ u = 0_{\mathcal{L}(E)}$.

Exercice II.7. Soit $p, q \in \mathcal{L}(E)$ tels que $p \circ q = p$ et $q \circ p = q$. Montrer que p et q sont deux projecteurs de même noyau.

III. Dimension finie

Exercice III.1. Soit $f: \mathbb{R}_2[X] \to \mathbb{R}_3[X]$ définie par f(P) = XP - P'.

- 1. Montrer que f est linéaire.
- 2. Donner une base de Im(f) et de ker(f).
- 3. *f* est-elle injective? surjective?
- 4. Reprendre les questions avec $\phi: \mathbb{R}_2[X] \to \mathbb{R}_3[X]$ définie par $\phi(P) = (X+1)P (X^2-1)P'$.

Exercice III.2. Pour tout $P \in \mathbb{R}_n[X]$, on pose J(P) = P(X+1) - P(X) et L(P) = XP' - 2P.

- 1. Montrer que J est une application linéaire à valeurs dans $\mathbb{R}_{n-1}[X]$ et L est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer ker(J) et Im(J).
- 3. Déterminer Im(L), puis rg(L), dim(ker(L)) et enfin ker(L).

Exercice III.3. Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (z, x - y, y + z) est un automorphisme.

Exercice III.4. Soit E un \mathbb{R} -ev de dimension 3, (e_1, e_2, e_3) une base de E et $\lambda \in \mathbb{R}$. On définit l'application $\varphi \in \mathcal{L}(E)$ par $\varphi(e_1) = e_1 + e_2$, $\varphi(e_2) = e_1 - e_2$ et $\varphi(e_3) = e_1 + \lambda e_3$.

- 1. Soit $u = xe_1 + ye_2 + ze_3$. Exprimer $\varphi(u)$ en fonction de x, y et z.
- 2. Comment choisir λ pour que φ soit injective? surjective?

Exercice III.5. Soit *E* l'ensemble des suites à valeurs réelles $u \in \mathbb{R}^{\mathbb{N}}$ vérifiant : $\forall n \in \mathbb{N}$, $u_{n+3} = 4u_{n+2} - u_{n+1} - 6u_n$.

1. Montrer que E est un sev de $\mathbb{R}^{\mathbb{N}}$.

- 2. Montrer que l'application $\varphi : u \in E \mapsto (u_0, u_1, u_2) \in \mathbb{R}^3$ est un isomorphisme.
- 3. En déduire la dimension de *E* puis une base de *E*.

Exercice III.6. Soit $n \in \mathbb{N}^*$ et $a_0, a_1, ..., a_n$ des réels distincts. On définit l'application ϕ de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} par : $\phi(P) = (P(a_0), P(a_1), ..., P(a_n))$.

- 1. Justifier que ϕ est linéaire.
- 2. Montrer que ϕ est un isomorphisme.
- 3. En déduire que pour tout (n+1)-uplet (b_0,b_1,\ldots,b_n) de réels, il existe un unique polynôme $P\in\mathbb{R}_n[X]$ tel que : $P(a_0)=b_0, P(a_1)=b_1,\ldots,P(a_n)=b_n$.

Exercice III.7. Soit E un espace vectoriel de dimension $n \ge 1$ et $f \in \mathcal{L}(E)$. On suppose que f est nilpotent et on pose p le plus petit entier naturel tel que $f^p = 0_{\mathcal{L}(E)}$.

- 1. Montrer qu'il existe $x \in E$ tel que la famille $(x, f(x), f^2(x), ..., f^{p-1}(x))$ est libre.
- 2. Comparer n et p et en déduire que $f^n = 0_{\mathcal{L}(E)}$.

Exercice III.8. Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On suppose que : $\forall x \in E, \exists p \in \mathbb{N}^* \mid u^p(x) = 0_E$. Montrer que u est nilpotent.

Exercice III.9. Soit E un \mathbb{K} -ev et f un endomorphisme de E tel que : $\forall x \in E, \exists \lambda \in \mathbb{K} \mid f(x) = \lambda x$.

On veut montrer que f est une homothétie. Pour cela, on prend $x_0 \in E$ un vecteur non nul et $\lambda_0 \in \mathbb{K}$ tel que $f(x_0) = \lambda_0 x_0$.

- 1. Que doit-on montrer?
- 2. Soit $y \in E$ tel que (x_0, y) est liée. Déterminer f(y).
- 3. Soit $y \in E$ tel que (x_0, y) est libre. Montrer que $f(y) = \lambda_0 y$.
- 4. Conclure.

Exercice III.10. Soit *E* un espace vectoriel de dimension *n* et *f* une forme linéaire sur *E*. On prend $a \in E$ tel que $f(a) \neq 0$.

- 1. Montrer que $E = \ker(f) \oplus \operatorname{Vect}(a)$.
- 2. On suppose que f(a) = 1 et on pose pour tout $x \in E$, p(x) = f(x)a. Montrer que p est un projecteur de E et déteminer ses éléments caractéristiques.

Exercice III.11. Soit $\alpha \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Montrer que $H = \{P \in \mathbb{C}_n[X] \mid P(\alpha) = 0\}$ est un hyperplan de $\mathbb{C}_n[X]$ et en déterminer une base.

Exercice III.12. Soit $a \in \mathbb{K}$ et $n \in \mathbb{N}$ avec $n \ge 2$.

- 1. Soit $\varphi \in \mathcal{L}(\mathbb{K}_n[X], \mathbb{K})$ une forme linéaire telle que pour tout $P \in \mathbb{K}_{n-1}[X]$, $\varphi((X-a)P) = 0$. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que pour tout $P \in \mathbb{K}_n[X]$, $\varphi(P) = \lambda P(a)$.
- 2. Soit $\varphi \in \mathcal{L}(\mathbb{K}_n[X], \mathbb{K})$ une forme linéaire telle que pour tout $P \in \mathbb{K}_{n-2}[X]$, $\varphi((X-a)^2P) = 0$. Montrer qu'il existe $(\lambda, \mu) \in \mathbb{K}^2$ tel que pour tout $P \in \mathbb{K}_n[X]$, $\varphi(P) = \lambda P(a) + \mu P'(a)$.

Exercice III.13. Soit $n \in \mathbb{N}^*$ et $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$ une forme linéaire. Montrer qu'il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que : $\forall M \in \mathcal{M}_n(\mathbb{K}), \varphi(M) = \operatorname{tr}(AM)$.

Exercice III.14. Soit *E* un espace vectoriel de dimension finie. Soient $f, g \in \mathcal{L}(E)$. Montrer que $\operatorname{rg}(f+g) \leq \operatorname{rg}(f) + \operatorname{rg}(g)$.

Exercice III.15 (Mines-Ponts PC 2018). Soit *E* un espace vectoriel de dimension finie. Soient $f, g \in \mathcal{L}(E)$ tels que

$$f + g = id_E$$
 et $rg(f) + rg(g) \le dim(E)$.

- 1. Montrer que $Im(f) \oplus Im(g) = E$.
- 2. Justifier que $f \circ g = g \circ f$ et en déduire que : $\forall x \in E, f \circ g(x) = 0$
- 3. Montrer que f et g sont des projecteurs.

Exercice III.16 (CCP PSI 2018). Soit $\varphi \in \mathcal{L}(\mathbb{R}[X])$ définie par $\varphi(P) = P(X+1) + P(X-1) - 2P(X)$.

- 1. Comparer le degré de P avec celui de $\varphi(P)$.
- 2. Déterminer le noyau de φ .
- 3. Étudier la surjectivité de φ .

Exercice III.17 (Mines-Ponts PC 2018). Soit
$$n \in \mathbb{N}^*$$
 et $A = \left\{ P \in \mathbb{R}_n[X] \mid \sum_{k=0}^n P^{(k)}(1) = 0 \right\}$.

- 1. Montrer que A est un sev de $\mathbb{R}_n[X]$ et déterminer sa dimension.
- 2. Soit $k \in [1, n]$. Déterminer $A \cap \text{Vect}(1, (X 1)^k)$.
- 3. Donner une base de A.

Exercice III.18 (X PC 2018). Soit E un \mathbb{C} -ev de dimension finie et $u \in \mathcal{L}(E)$.

Montrer que $\operatorname{rg}(u) = \operatorname{rg}(u^2) \iff E = \ker(u) \oplus \operatorname{Im}(u)$.