Intégration - Exercices

I. Calculs d'intégrales

Exercice I.1. Calculer les intégrales suivantes :

1.
$$\int_{0}^{1} \frac{x}{1+x^{4}} dx$$
2.
$$\int_{-1}^{1} (2t+1) e^{-t} dt$$
3.
$$\int_{1}^{e} t^{n} \ln(t) dt$$
4.
$$\int_{0}^{x} e^{2t} \sin(t) dt$$
5.
$$\int_{0}^{1} \arctan(x) dx$$
6.
$$\int_{1}^{2} \frac{1}{t^{x}\sqrt{1+x}} (u = \sqrt{1+x})$$

$$7. \int_0^1 \frac{\arcsin(t/2)}{\sqrt{4-t^2}} dt$$

8.
$$\int_0^1 \ln(1+t^2) dt$$

$$9. \int_1^2 \frac{\mathrm{d}t}{t + t \ln(t)}$$

$$10. \int_{0}^{x} \frac{t+3}{t^2 - 2t + 5} dt$$

11.
$$\int_{0}^{x} \frac{t^2 - 2t + 3}{t^3 - 2t^2 - t + 2} dt$$

II. Propriétés importantes de l'intégrale

Exercice II.1. Déterminer $\lim_{x \to +\infty} \int_{x}^{x+1} \frac{\mathrm{d}t}{t^2 + \sqrt{t}}$.

Exercice II.2. Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$ telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet au moins un point fixe.

1. En encadrant l'intégrande, montrer que $\lim_{t \to 0^+} \int_{t}^{2x} \frac{e^t}{t} dt = \ln 2$.

2. Calculer les limites suivantes :

(a)
$$\lim_{x \to 0^+} \int_{-x}^x \sin(t^2) dt$$

(b)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{1}{\ln(t)} dt$$

(c)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\cos(t)}{t^{2}} dt$$
(d)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\sin(t)}{t} dt$$

(d)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\sin(t)}{t} dt$$

Exercice II.4. 1. Montrer que pour tout $k \in \mathbb{N}^*$, $\frac{1}{k+1} \le \int_{k}^{k+1} \frac{1}{x} dx \le \frac{1}{k}$.

- 2. En déduire que $\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n$.
- 3. Déterminer la limite et un équivalent simple de $\sum_{i=1}^{n} \frac{1}{k}$

Exercice II.5. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{t^n}{1+t^2} dt$.

- 1. Calculer u_0 .
- 2. Montrer que : $\forall n \in \mathbb{N}, 0 \le u_n \le \frac{1}{n+1}$. En déduire que la suite (u_n) converge et déterminer sa limite.
- 3. Calculer $u_n + u_{n+2}$.
- 4. Pour tout $n \ge 0$, on pose $S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$. Exprimer S_n en fonction de u_0 et u_{2n+2} puis déterminer $\lim S_n$.

Exercice II.6. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1. En encadrant la fonction intégrée, montrer que $I_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Pour tout $n \in \mathbb{N}$, calculer $I_n + I_{n+1}$.
- 3. Pour tout $n \ge 1$, on pose $u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer u_n en fonction de I_0 et I_n .
- 4. Déterminer $\lim u_n$.

Exercice II.7. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n e^x dx$.

- 1. Montrer que la suite (I_n) converge vers 0.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$.
- 3. Montrer par récurrence sur n qu'il existe $a_n, b_n \in \mathbb{Z}$ tels que $I_n = a_n e + b_n$.
- 4. En raisonnant par l'absurde, montrer que e ∉ ℚ.

Exercice II.8. Soit $f:[0,1] \to \mathbb{R}$ une fonction continue. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 f(t) t^n dt$. Montrer que $I_n \xrightarrow[n \to +\infty]{} 0$.

Exercice II.9 (Wallis). Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n t dt$.

- 1. Montrer que la suite (I_n) est décroissante.
- 2. Montrer que pour tout entier naturel, $I_{n+2} = \frac{n+1}{n+2}I_n$.
- 3. En déduire que :
 - (a) pour tout $n \in \mathbb{N}$, $I_n I_{n+1} = \frac{\pi}{2(n+1)}$.
 - (b) pour tout $p \in \mathbb{N}$, $I_{2p} = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2}$ et $I_{2p+1} = \frac{2^{2p}(p!)^2}{(2p+1)!}$.
- 4. Montrer que $I_n \sim I_{n+1}$, puis déterminer un équivalent simple de I_n lorsque n tend vers $+\infty$.

Exercice II.10 (Lemme de Riemann-Lebesgue).

Soit $f:[a,b]\to\mathbb{C}$ une fonction de classe \mathscr{C}^1 . Montrer que : $\int_a^b f(t) e^{int} dt \xrightarrow[n\to+\infty]{} 0$.

Exercice II.11 (Cauchy-Schwarz). Soit $f, g \in \mathcal{C}([a, b], \mathbb{R})$. En remarquant que la fonction $x \mapsto \int_a^b (xf(t) + g(t))^2 dt$ est polynomiale et positive sur \mathbb{R} , montrer que :

$$\left| \int_{a}^{b} f(t)g(t) dt \right| \leq \sqrt{\int_{a}^{b} f(t)^{2} dt} \sqrt{\int_{a}^{b} g(t)^{2} dt}.$$

Exercice II.12 (Centrale PC 2018). Soit $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. Pour tout $f \in E$, on pose $\Phi(f) : x \in \mathbb{R} \mapsto \int_0^x f(t) dt$.

- 1. Justifier que Φ est un endomorphisme de E.
- 2. Déterminer $ker(\Phi)$ et $Im(\Phi)$.
- 3. Soit F un sev de E de dimension finie qui est stable par Φ . On note φ l'endomorphisme induit par Φ sur F. Montrer qu'il existe $m \in \mathbb{N}$ tel que $(\mathrm{id}, \varphi, \ldots, \varphi^m)$ est liée.
- 4. En déduire que tous les éléments de F sont solutions d'une même EDL homogène à coefficients constants.
- 5. En déduire F.

Exercice II.13 (X PC 2018). Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. On pose pour tout $n \in \mathbb{N}$, $I_n = n \int_0^1 x^n f(x) dx$.

- 1. Soit $\alpha \in [0,1[$. Montrer que $\int_0^\alpha x^n f(x) dx = \int_{n \to +\infty}^\infty o\left(\frac{1}{n}\right)$.
- 2. On suppose que f(1) = 0.

- (a) Soit $\varepsilon > 0$. Montrer qu'il existe $\alpha \in [0, 1[$ tel que pour tout $n \in \mathbb{N}, \left| \int_{0}^{1} x^{n} f(x) dx \right| \le \frac{\varepsilon}{n+1}$.
- (b) En déduire la limite lorsque n tend vers $+\infty$ de I_n .
- 3. On ne suppose plus f(1) = 0. En se ramenant au cas précédent, déterminer la limite de I_n lorsque n tend vers $+\infty$.

Exercice II.14 (TPE PSI 2018). Trouver toutes les fonctions $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ telles que :

$$\forall x \in \mathbb{R}, \quad f(x) + \int_0^x (x - t) f(t) dt = 1.$$

1. Justifier que pour tout $x \ge -2$, $x^3 + 2x^2 + 1 > 0$.

- 2. Prouver que la fonction $f: x \mapsto \int_1^x \frac{1}{\sqrt{t^3 + 2t^2 + 1}} \mathrm{d}x$ est bien définie sur $[-2, +\infty[$ et est de classe \mathscr{C}^1 .
- 3. Montrer que f réalise une bijection de [-2,2] sur un intervalle I.
- 4. Justifier que f^{-1} est aussi de classe \mathscr{C}^1 sur I, que $0 \in I$ puis calculer $(f^{-1})'(0)$.

Exercice II.16. Soit φ la fonction définie sur \mathbb{R} par : $\forall t \in \mathbb{R}^*$, $\varphi(t) = \frac{\sinh(t)}{t}$ et $\varphi(0) = 1$.

Pour tout $x \in \mathbb{R}$, on pose $f(x) = \int_{-\infty}^{2x} \varphi(t) dt$.

- 1. Justifier que f est bien définie sur \mathbb{R} et étudier sa parité.
- 2. Montrer que f est dérivable sur \mathbb{R} et calculer sa dérivée.
- 3. Dresser le tableau de variations de f sur \mathbb{R} .

1. Montrer que pour tout $x \in \mathbb{R}$, il existe un unique $y(x) \in \mathbb{R}$ tel que $\int_{-\infty}^{y(x)} e^{t^2} dt = 1$. Exercice II.17 (Centrale PSI 2018).

- 2. Justifier que la fonction *y* est monotone.
- 3. Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^x e^{t^2} dt$. Justifier que F est de classe \mathscr{C}^1 sur \mathbb{R} et bijective (on précisera le domaine
- 4. En déduire que y est continue et dérivable. Donner une expression simple de sa dérivée en fonction de x et y(x).
- 5. En encadrant $\int_{r}^{y(x)} e^{t^2} dt$, déterminer l'équation de l'asymptote à la courbe représentative de y lorsque x est au

III. Sommes de Riemann

Exercice III.1. Déterminer $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{n+k}$ en étudiant les sommes de Riemann de la fonction $f: x \mapsto \frac{1}{1+x}$.

Exercice III.2. Calculer les limites des suites :
1.
$$u_n = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1+3\frac{k}{n}}$$

2.
$$v_n = \frac{1}{n} \sum_{k=0}^{n-1} \sqrt[n]{2^k}$$

3.
$$w_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2kn}}$$
.

Exercice III.3. Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 . Pour tout $n \in \mathbb{N}^*$, on pose $A_n = \frac{1}{n} \sum_{k=0}^{n-1} (-1)^k f\left(\frac{k}{n}\right)$.

- 1. Justifier que pour tout $n \in \mathbb{N}^*$, $A_{2n} = \frac{1}{2n} \sum_{k=0}^{n-1} \left(f\left(\frac{2k}{2n}\right) f\left(\frac{2k+1}{2n}\right) \right)$.
- 2. En déduire que $A_{2n} \xrightarrow[n \to +\infty]{} 0$.
- 3. Montrer alors que (A_n) converge vers 0.

IV. Taylor-Lagrange

1. Montrer que: $\forall x \in \left[0, \frac{\pi}{2}\right], 1 - \frac{x^2}{2} \le \cos(x) \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$. Exercice IV.1.

- 2. Montrer que : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \left| e^x \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x|^{n+1}}{(n+1)!} e^{|x|}$. En déduire la limite de $\sum_{k=0}^n \frac{x^k}{k!}$ lorsque n tend vers $+\infty$.
- 3. En appliquant TL à la fonction $x \mapsto \ln(1+x)$, calculer la limite de la suite $u_n = 1 \frac{1}{2} + \frac{1}{3} \dots + (-1)^{n-1} \frac{1}{n}$.

Indications - Solutions

Exercice I.1

1.
$$\int_0^1 \frac{x}{1+x^4} dx = \frac{1}{2} \left[\arctan(x^2)\right]_0^1 = \frac{\pi}{4}$$

2. (IPP)
$$\int_{-1}^{1} (2t+1) e^{-t} dt = e-5e^{-1}$$

3. (IPP)
$$\int_{1}^{e} t^{n} \ln(t) dt = \frac{e^{n+1}}{n+1} - \frac{e^{n+1}}{(n+1)^{2}} + \frac{1}{(n+1)^{2}}$$

4. (IPP ou complexe)
$$\int_{0}^{x} e^{2t} \sin(t) dt = \frac{1}{5} (2\sin(x) - \cos(x)) e^{2x}$$

5. (IPP)
$$\int_0^1 \arctan(x) dx = \frac{\pi}{4} - \frac{\ln(2)}{2}$$

6.
$$\int_{1}^{2} \frac{1}{x\sqrt{1+x}} = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{(u^{2}-1)u} 2u du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{2}{u^{2}-1} du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u-1} - \frac{1}{u+1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u^{2}-1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u^{2}-1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u^{2}-1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u^{2}-1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u^{2}-1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{u^{2}-1} du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}+1)(\sqrt{2}-1)} \right) du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}+1)}{(\sqrt{3}-1)(\sqrt{2}-1)} \right) du = \ln \left(\frac{(\sqrt{3}-1)(\sqrt{2}-1)}{(\sqrt{3}-1)(\sqrt{2}-1)} \right) du = \ln$$

7.
$$(u'u) \int_0^1 \frac{\arcsin(t/2)}{\sqrt{4-t^2}} dt = \frac{1}{2} \left[\arcsin(t/2)^2\right]_0^1 = \frac{\pi^2}{72}$$

8. (IPP)
$$\int_0^1 \ln(1+t^2) dt = \frac{\pi}{2} + \ln(2) - 2$$

9.
$$(u = \ln(t)) \int_{1}^{2} \frac{dt}{t + t \ln(t)} = \ln(1 + \ln(2))$$

10.
$$\int_{0}^{x} \frac{t+3}{t^{2}-2t+5} dt = \int_{0}^{x} \frac{1}{2} \frac{2t-2}{t^{2}-2t+5} dt + \int_{0}^{x} \frac{4}{t^{2}-2t+5} dt = \ln(x^{2}-2x+5)/2 + \int_{0}^{x} \frac{4}{(t-1)^{2}+4} dt = \ln(x^{2}-2x+5)/2 + \int_{0}^{x} \frac{1}{((t-1)/2)^{2}+1} dt = 2 \arctan((x-1)/2) + \ln(x^{2}-2x+5)/2$$

11. (DES)
$$\int_{-\infty}^{\infty} \frac{t^2 - 2t + 3}{t^3 - 2t^2 - t + 2} dt = \int_{-\infty}^{\infty} \frac{1}{t + 1} - \frac{1}{t - 1} + \frac{1}{t - 2} dt = \ln|x + 1| - \ln|x - 1| + \ln|x - 2|$$

Exercice II.1: Comme la fonction $f: t \mapsto \frac{1}{t^2 + \sqrt{t}}$ est décroissante sur $[x, x+1], \int_x^{x+1} \frac{\mathrm{d}t}{t^2 + \sqrt{t}} \le f(x) \xrightarrow[x \to +\infty]{} 0.$

Exercice II.2: On pose $g: x \mapsto f(x) - x$. C'est une fonction continue sur [0,1] et $\int_0^1 g(t) dt = 0$. Si g ne change pas de signe, alors $\forall t \in [0,1], g(t) = 0$, donc f a une infinité de points fixes. Sinon, g change de signe, donc s'annule d'après le TVI. Donc f admet un point fixe.

Exercice II 3

- 1. Pour tout $t \in [x, 2x]$, $\frac{e^x}{t} \le \frac{e^t}{t} \le \frac{e^{2x}}{t}$, donc $e^x \int_x^{2x} \frac{1}{t} dt \le \int_x^{2x} \frac{e^t}{t} dt \le e^{2x} \int_x^{2x} \frac{1}{t} dt$ et $e^x \ln 2 \le \int_x^{2x} \frac{e^t}{t} dt \le e^{2x} \ln 2$ puis on applique les gendarmes.
- 2. (a) Pour tout $t \in \mathbb{R}$, $|\sin(t^2)| \le 1$, donc pour tout x > 0, $\left| \int_{-x}^{x} \sin(t^2) dt \right| \le 2x \xrightarrow{x \to 0^+} 0$.
 - (b) La fonction $t \mapsto \frac{1}{\ln(t)}$ est décroissante sur]1, $+\infty$ [, donc pour tout x > 1, $\int_{x}^{2x} \frac{1}{\ln(t)} dt \ge \frac{x}{\ln(2x)} \xrightarrow[x \to +\infty]{} +\infty$.
 - (c) Pour tout x > 0, $\left| \int_{x}^{2x} \frac{\cos(t)}{t^2} dt \right| \le \int_{x}^{2x} \frac{1}{t^2} dt = \left[-1/t \right]_{x}^{2x} = \frac{1}{x} \frac{1}{2x} = \frac{1}{2x} \xrightarrow{x \to +\infty} 0$.
 - (d) Soit x > 0, (IPP) $\int_{x}^{2x} \frac{\sin(t)}{t} dt = \left[-\frac{\cos(t)}{t} \right]_{x}^{2x} \int_{x}^{2x} \frac{\cos(t)}{t^{2}} dt \xrightarrow[x \to +\infty]{} 0$.

Exercice II.4:

- 1. La fonction $x \mapsto \frac{1}{x}$ est décroissante sur \mathbb{R}_*^+ , donc $\frac{1}{n+1} \le \int_n^{n+1} \frac{1}{x} dx \le \frac{1}{n}$.
- 2. On somme les encadrements précédents pour k allant de 1 à n.
- 3. On divise l'encadrement précédent et on applique les gendarmes.

Exercice II.5:

1.
$$u_0 = \frac{\pi}{4}$$
.

2. Pour tout $t \in [0,1], 0 \le \frac{t^n}{1+t^2} \le t^n$ puis on intègre. Par encadrement, la suite (u_n) converge vers 0.

3.
$$u_n + u_{n+2} = \frac{1}{n+1}$$
.

4. Comme
$$\frac{1}{2k+1} = u_{2k} + u_{2k+2}$$
, $S_n = \sum_{k=0}^n (-1)^k u_{2k} + \sum_{k=0}^n (-1)^k u_{2(k+1)} = \sum_{k=0}^n (-1)^k u_{2k} - \sum_{k=1}^{n+1} (-1)^k u_{2k} = u_0 - (-1)^n u_{2n+2} \xrightarrow[n \to +\infty]{} u_0 = \frac{\pi}{4}$.

Exercice II.6:

- 1. Pour tout $t \in [0,1], 0 \le \frac{x^n}{1+x} \le x^n$, donc $0 \le I_n \le \frac{1}{n+1}$.
- 2. $I_n + I_{n+1} = \frac{1}{n+1}$.
- 3. Comme $\frac{1}{k} = I_{k-1} + I_k$, $u_n = \sum_{k=1}^{n} (-1)^{k+1} I_{k-1} + \sum_{k=1}^{n} (-1)^{k+1} I_k = I_0 (-1)^n I_n$.
- 4. $\lim u_n = I_0 = \ln 2$.

Exercice II.7:

- 1. Pour tout $n \in \mathbb{N}$, $|I_n| \le e \int_0^1 x^n dx = \frac{e}{n+1}$, donc $I_n \to 0$ par encadrement.
- 2. On fait une intégration par parties : on dérive $x \mapsto x^{n+1}$ et on primitive $x \mapsto e^x$.
- 3. Pour n = 0, $I_0 = \int_0^1 e^x dx = e 1$, donc $a_0 = 1$ et $b_0 = -1$ conviennent.
 - Soit $n \in \mathbb{N}$. Supposons qu'il existe $a_n, b_n \in \mathbb{Z}$ tels que $I_n = a_n e + b_n$. Alors $I_{n+1} = e (n+1)(a_n e + b_n) = -na_n e (n+1)b_n$, donc $a_{n+1} = -na_n \in \mathbb{Z}$ et $b_{n+1} = -(n+1)b_n$ conviennent.
- 4. Supposons par l'absurde que $e \in \mathbb{Q}$. Il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $e = \frac{p}{q}$. Alors, pour tout $n \in \mathbb{N}$, $I_n = \frac{a_n p + b_n q}{q}$. Donc $a_n p + b_n q \to 0$. Or, pour tout $n \in \mathbb{N}$, $a_n p + b_n q \in \mathbb{Z}$, donc la suite $(a_n p + b_n q)$ est stationnaire : il existe $N \in \mathbb{N}$ tel que $\forall n \geq N$, $a_n p + b_n q = 0$, donc $I_n = 0$. Or, c'est absurde car I_n est l'intégrale d'une fonction positive sur [0,1] qui n'est pas identiquement nulle, donc $I_n > 0$.

Exercice II.8: Comme f est continue sur [0,1], elle est bornée : il existe $M \in \mathbb{R}$ tel que pour tout $t \in [0,1]$, $|f(t)| \leq M$. Donc $|I_n| \leq \int_0^1 |f(t)t^n| dt \leq M \int_0^1 t^n dt = \frac{M}{n+1} \xrightarrow[n \to +\infty]{} 0$.

Exercice II.9

- 1. Pour tout $x \in [0, \pi/2]$, $0 \le \sin(x) \le 1$. Donc pour tout $n \in \mathbb{N}$, et pour tout $x \in [0, \pi/2]$, $\sin^n(x) \ge \sin^{n+1}(x)$. En intégrant de 0 à $\pi/2$, on trouve que $I_n \ge I_{n+1}$, donc que (I_n) est décroissante.
- 2. On fait une IPP : on dérive \sin^{n+1} et on intègre cos.
- 3. (a) Soit $n \in \mathbb{N}$, $(n+2)I_{n+2} = (n+1)I_n$ et en multipliant par I_{n+1} , on trouve $(n+2)I_{n+2}I_{n+1} = (n+1)I_{n+1}I_n$. Ainsi, la suite $((n+1)I_{n+1}I_n)$ est constante. Son premier terme est $I_0I_1 = \frac{\pi}{2}$. Donc pour tout $n \in \mathbb{N}$, $(n+1)I_{n+1}I_n = \frac{\pi}{2}$.
 - (b) On procède par récurrence.
- 4. La suite (I_n) est décroissante et positive, donc pour tout $n \in \mathbb{N}$, $0 < I_{n+2} \le I_{n+1} \le I_n$. En divisant par I_n , on a $\frac{n+2}{n+1} \le \frac{I_{n+1}}{I_n} \le 1$. Donc $\frac{I_{n+1}}{I_n} \to 1$ par encadrement. Ainsi, $I_n \sim I_{n+1}$. Puis, $I_{n+1}I_n = \frac{\pi}{2(n+1)}$, donc $I_n^2 \sim \frac{\pi}{2(n+1)}$ et $I_n \sim \sqrt{\frac{\pi}{2(n+1)}}$.

Exercice II.10: On commence par faire une IPP: on dérive f et on primitive e^{int} : $\int_a^b f(t) e^{int} dt = \frac{1}{in} [f(t) e^{int}]_a^b - \frac{1}{n} \int_a^b f'(t) e^{int} dt.$ Or $\left| \frac{1}{in} [f(t) e^{int}]_a^b \right| \le \frac{|f(a)| + |f(b)|}{n} \to 0 \text{ et } \left| \frac{1}{n} \int_a^b f(t) e^{int} dt \right| \le \frac{1}{n} \int_a^b |f(t)| dt \to 0.$

Or $\left|\frac{1}{in}[f(t)e^{int}]_a^b\right| \le \frac{|f(a)| + |f(b)|}{n} \to 0$ et $\left|\frac{1}{n}\int_a^b f(t)e^{int} dt\right| \le \frac{1}{n}\int_a^b |f(t)| dt \to 0$. **Exercice II.11:** On remarque que $P(x) = \int_a^b (xf(t) + g(t))^2 dt = x^2 \int_a^b f(t)^2 dt + 2x \int_a^b f(t)g(t) dt + \int_a^b g(t)^2 dt$, donc P est un polynôme qui est toujours positif. Si $\int_a^b f(t)^2 dt = 0$ alors la fonction f^2 est nulle sur [a,b] (car continue, positive et d'intégrale nulle). Dans ce cas,

l'inégalité est vérifiée. Sinon, P est de degré 2 et toujours positif ou nul, donc son discriminant est négatif ou nul : $4\left(\int_a^b f(t)g(t)dt\right)^2 - \int_a^b f(t)g(t)dt$

 $4\int_a^b f(t)^2 dt \int_a^b g(t)^2 dt \le 0$. En réorganisant et en prenant la racine carrée, on trouve l'inégalité voulue.

- 1. La linéarité découle de la linéarité de l'intégrale. D'autre part, si $f \in E$, la fonction $\Phi(f)$ est de classe \mathscr{C}^1 d'après le TFA. En particulier, $\Phi(f) \in E$.
- 2. Soit $f \in E$. On a $\Phi(f) = 0 \iff \forall x \in \mathbb{R}, \Phi(f)(x) = 0$. Donc si $f \in \ker(\Phi)$, alors $f = \Phi(f)' = 0_E$. Donc $\ker(\Phi) = \{0_E\}$. On a déjà remarqué que $\operatorname{Im}(\Phi) \subset \mathscr{C}^1(\mathbb{R}, \mathbb{R})$. Notons $G = \{g \in \mathscr{C}^1(\mathbb{R}, \mathbb{R}) \mid g(0) = 0\}$. Alors $\operatorname{Im}(\Phi) \subset G$. De plus, si $g \in G$, on a $g' \in E$ et $g = \Phi(g')$. Donc $\operatorname{Im}(\Phi) = G$.
- 3. Notons $n = \dim(F)$. Si $m \ge n^2$, alors $(\mathrm{id}, \varphi, \ldots, \varphi^m)$ est une famille de $\mathcal{L}(F)$ qui est de dimension n^2 : elle ne peut pas être libre.
- 4. Remarquons que pour tout $f \in F$ et tout $k \in \mathbb{N}^*$, $\varphi^k(f)$ est de classe \mathscr{C}^1 et $\varphi^k(f)' = \varphi^{k-1}(f)$. Prenons le m minimum donné par la question précédente. Il existe donc $m \in \mathbb{N}$ et $\lambda_0, \ldots, \lambda_m \in \mathbb{R}$ tels que $\sum_{i=0}^m \lambda_i \varphi^i = 0_{\mathscr{L}(F)}$.

Déjà, $\lambda_0 \neq 0$, sinon, on aurait pour tout $f \in F$, $\sum_{i=1}^{m} \lambda_i \varphi^i(f)$ et en dérivant, on aurait une contradiction avec la minimalité de m.

Ainsi, pour tout $f \in F$, $f = \frac{1}{\lambda_0} \sum_{i=1}^m \lambda_i \varphi^i(f)$. On montre alors que f est de classe \mathscr{C}^{∞} par récurrence.

Enfin, en dérivant la relation précédente m fois, on obtient que tous les éléments de F sont solutions d'une $EDL \sum_{i=0}^{m} \lambda_i y^{(i)} = 0$.

5. Soit $f \in F$. Alors $g = \varphi^m(f) \in F$ est solution de l'EDL précédente. Or, pour tout $k \in [0, m-1]$, $g^{(k)}(0) = 0$. D'après le théorème de Cauchy linéaire (légèrement hors programme pour l'ordre > 2), g est la solution nulle! Or $f = g^{(m)}$, donc f = 0. Ainsi, $F = \{0\}$.

Exercice II 13

- 1. La fonction f est continue sur [0,1] qui est un segment, donc elle est bornée : il existe $M \in \mathbb{R}$ tel que $\forall x \in [0,1], |f(x)| \le M$. Ainsi, $\left| \int_0^\alpha x^n f(x) dx \right| \le M \int_0^\alpha x^n dx = \frac{M\alpha^{n+1}}{n+1} \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right) \operatorname{car} \alpha \in [0,1[.$
- 2. (a) Comme f est continue et que f(1) = 0, il existe $\alpha > 0$ tel que $\forall x \in [\alpha, 1], |f(x)| \le \varepsilon$. Donc $\left| \int_{\alpha}^{1} x^{n} f(x) dx \right| \le \varepsilon \frac{1 \alpha^{n+1}}{n+1} \le \frac{\varepsilon}{n+1}$.
 - (b) En utilisant le α ci-dessus, $|I_n| \le n \left| \int_0^\alpha x^n f(x) dx \right| + \frac{n\varepsilon}{n+1} \le n \left| \int_0^\alpha x^n f(x) dx \right| + \varepsilon$. Comme $\left| \int_0^\alpha x^n f(x) dx \right| = o(1/n)$, il existe $N \in \mathbb{N}$ tel que pour $n \ge N$, $n \left| \int_0^\alpha x^n f(x) dx \right| \le \varepsilon$. Donc pour tout $n \ge N$, $|I_n| \le 2\varepsilon$. Ainsi, $I_n \to 0$.
- 3. On pose g = f f(1). La fonction g vérifie les hypothèse précédentes. Donc $n \int_0^1 x^n g(x) dx \to 0$. Or $n \int_0^1 x^n g(x) dx = n \int_0^1 x^n f(x) dx n \int_0^1 x^n f(1) dx = I_n f(1) \frac{n}{n+1}$. Ainsi, $I_n \to f(1)$.

Exercice II.14:

• Analyse : soit f vérifiant l'équation. Alors la fonction $x \mapsto \int_0^x (x-t)f(t)\mathrm{d}t = x \int_0^x f(t)\mathrm{d}t - \int_0^x tf(t)\mathrm{d}t$ est de classe \mathscr{C}^1 de dérivée $x \mapsto \int_0^x f(t)\mathrm{d}t$ d'après le TFA. Donc f est aussi de classe \mathscr{C}^1 . En dérivant l'égalité, on trouve :

$$\forall x \in \mathbb{R}, f'(x) + \int_0^x f(t) dt = 0$$

De même, on trouve que f' est de classe \mathscr{C}^1 , et en dérivant :

$$\forall x \in \mathbb{R}, f''(x) + f(x) = 0.$$

Ainsi, il existe $A, B \in \mathbb{R}$ tels que $f = A\cos + B\sin$.

• Synthèse : soit $A, B \in \mathbb{R}$ et $f = A\cos + B\sin$.

$$\int_{0}^{x} (x-t)(A\cos(t) + B\sin(t))dt = x[A\sin(t) - B\cos(t)]_{0}^{x} - \int_{0}^{x} t(A\cos(t) + B\sin(t))dt$$

$$= Ax\sin(x) - Bx\cos(x) + xB - [t(A\sin(t) - B\cos(t))]_{0}^{x} + \int_{0}^{x} A\sin(t) - B\cos(t)dt$$

$$= xB - A\cos(x) + A - B\sin(x)$$

On remplace dans l'équation pour trouver B = 0, A = 1.

La seule solution est $f = \cos$.

Exercice II.15:

- 1. On pose $g: x \mapsto x^3 + 2x^2 + 1$ qui est de classe \mathscr{C}^{∞} sur \mathbb{R} avec $g'(x) = 3x^2 + 4x$. Donc g' s'annule en 0 et en $-\frac{4}{3}$. En dressant le tableau de variations de g, on trouve que g est croissante sur [-2, -4/3], avec g(-2) = 1, puis décroissante sur [-4/3, 0] avec g(0) = 1 puis croissante sur $[0, +\infty[$. Donc on a bien $\forall x \in [2, +\infty[$, g(x) > 0.
- 2. La fonction $t\mapsto \frac{1}{\sqrt{t^3+2t^2+1}}$ est continue sur $[-2,+\infty[$ d'après la question précédente. D'après le TFA, la fonction f est bien définie et \mathscr{C}^1 sur $[-2,+\infty[$.
- 3. On a pour tout $x \ge -2$, $f'(x) = \frac{1}{\sqrt{x^3 + 2x^2 + 1}} > 0$, donc f est strictement croissante sur [-2,2] et continue sur [-2,2]. D'après le TBM, f réalise une bijection de [-2,2] sur [f(-2),f(2)].
- 4. Comme f' ne s'annule pas sur [-2,2], f^{-1} est aussi de classe \mathscr{C}^1 . f(1)=0, donc $0\in I$. De plus, $(f^{-1})'(0)=\frac{1}{f'(f^{-1}(0))}=\frac{1}{f'(1)}$. Or $f':x\mapsto \frac{1}{\sqrt{x^3+2x^2+1}}$, donc $(f^{-1})'(0)=2$.

Exercice II.16:

1. La fonction φ est continue sur \mathbb{R}^* par opérations, et $\varphi(t) \xrightarrow[t \to 0]{} 1 = \varphi(0)$. Donc φ est continue sur \mathbb{R} . Ainsi, pour tout $x \in \mathbb{R}$, f(x) et bien définie.

Prenons $x \in \mathbb{R}$, $f(-x) = \int_{-x}^{-2x} \varphi(t) dt = \int_{x}^{2x} \varphi(-u)(-du) = -f(x)$ en posant u = -t. Donc f est impaire.

- 2. On pose $F: x \mapsto \int_0^x \varphi(t) dt$. Comme φ est continue sur \mathbb{R} , d'après le TFA, F est l'unique primitive de φ qui s'annule en 0. En particulier, F est dérivable sur \mathbb{R} et $F' = \varphi$. De plus, pour tout $x \in \mathbb{R}$, f(x) = F(2x) F(x), donc f est dérivable par opérations. Enfin, pour tout $x \in \mathbb{R}$, $f'(x) = 2\varphi(2x) \varphi(x) = \frac{\sinh(2x) \sinh(x)}{x}$.
- 3. Comme f est impaire, il suffit de l'étudier sur \mathbb{R}_+ . Pour tout $x \in \mathbb{R}_+$, $x \le 2x$, donc $\mathrm{sh}(x) \le \mathrm{sh}(2x)$ par croissance de sh. Ainsi f' est positive sur \mathbb{R}_+ . f est donc croissante sur \mathbb{R} . Enfin, comme $\varphi(t) \xrightarrow[t \to +\infty]{} +\infty$, il existe $x_0 > 0$ tel que pour tout $t \ge x_0$, $\varphi(t) \ge 1$ et donc pour tout $x \ge x_0$, $f(x) \ge \int_{x}^{2x} 1 \, \mathrm{d}t = x \xrightarrow[x \to +\infty]{} +\infty$.

Exercice II.17:

- 1. Soit $x \in \mathbb{R}$. La fonction $g : y \mapsto \int_{x}^{y} e^{t^2} dt$ est de classe \mathscr{C}^1 car c'est une primitive de $t \mapsto e^{t^2}$. Sa dérivée étant strictement positive, elle est strictement croissante sur $[x, +\infty[$. De plus, g(x) = 0 et $\forall y \ge x$, $g(x) \ge y x$, donc $\lim_{y \to +\infty} g(x) = +\infty$. On conclut avec le TVI
- 2. Soit $x_1 < x_2$, $\int_{x_1}^{y(x_1)} e^{t^2} dt = \int_{x_2}^{y(x_2)} e^{t^2} dt$, donc $\int_{x_1}^{x_2} e^{t^2} dt = \int_{y(x_1)}^{y(x_2)} e^{t^2} dt$ avec Chasles. D'où $y(x_2) > y(x_1)$.
- 3. C'est le TFA. On a de plus $F'(x) = e^{x^2} > 0$, donc F est strictement croissante. Puis, pour x > 0, $F(x) \ge x$, donc $\lim_{x \to +\infty} F(x) = +\infty$ et si x < 0, $F(x) = -\int_{-\infty}^{0} e^{t^2} dt \le x$, donc $\lim_{x \to -\infty} F(x) = -\infty$. Donc TBM : F est une bijection de \mathbb{R} sur \mathbb{R} .
- 4. On a F(y(x)) F(x) = 1, donc $y(x) = F^{-1}(1 + F(x))$. Comme F' ne s'annule pas sur \mathbb{R} , F^{-1} est aussi de classe \mathscr{C}^1 sur \mathbb{R} . Par composition, y est de classe \mathscr{C}^1 , et $y'(x) = \frac{F'(x)}{F'(F^{-1}(1 + F(x)))} = \frac{e^{x^2}}{e^{y(x)^2}} = e^{x^2 y(x)^2}$.
- 5. Par croissance de $t \mapsto e^{t^2}$ sur \mathbb{R}_+ , on a $(y(x) x)e^{x^2} \le \int_x^{y(x)} e^{t^2} dt \le (y(x) x)e^{y(x)^2}$, donc $e^{-y(x)^2} \le y(x) x \le e^{-x^2}$. Donc y(x) x = o(x): la première bissectrice est donc asymptote à y en $+\infty$.

Exercice III.1: Les sommes de Riemann de f sur l'intervalle [0,1] sont $S_n = \frac{1}{n} \sum_{k=0}^n \frac{1}{1+\frac{k}{n}} = \sum_{k=0}^n \frac{1}{n+k}$. Donc $\lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{n+k} = \int_0^1 \frac{\mathrm{d}x}{1+x} = \ln 2$.

Exercice III.2:

- 1. Sommes de Riemann de $f(x) = \frac{1}{1+3x}$: $\lim u_n = \int_0^1 \frac{dx}{1+3x} = \frac{\ln 4}{3}$
- 2. Sommes de Riemann de $f(x) = 2^x$: $\lim v_n = \int_0^1 2^x dx = \frac{1}{\ln 2}$
- 3. Sommes de Riemann de $f(x) = \frac{1}{\sqrt{1+2x}}$: $\lim w_n = \int_0^1 \frac{dx}{\sqrt{1+2x}} = \sqrt{3} 1$.

Exercice III.3:

- 1. Soit $n \in \mathbb{N}^*$. On a $\sum_{k=0}^{n-1} f\left(\frac{2k}{2n}\right) = \sum_{\substack{i=0 \ i \text{ pair}}}^{2n-2} f\left(\frac{i}{2n}\right)$ et $\sum_{k=0}^{n-1} f\left(\frac{2k+1}{2n}\right) = \sum_{\substack{i=1 \ i \text{ impair}}}^{2n-1} f\left(\frac{i}{2n}\right)$, d'où le résultat.
- 2. Comme f est de classe \mathscr{C}^1 sur [0,1], elle est lipschitzienne sur [0,1] d'après l'IAF. Donc il existe $M \in \mathbb{R}$ tel que pour tout $x,y \in [0,1]$, $|f(x)-f(y)| \leq M|x-y|$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $|A_{2n}| \le \frac{1}{2n} \sum_{k=0}^{n-1} \left| f\left(\frac{2k}{2n}\right) - f\left(\frac{2k+1}{2n}\right) \right| \le \frac{M}{2n} \sum_{k=0}^{n-1} \frac{1}{2n} = \frac{M}{4n} \xrightarrow[n \to +\infty]{} 0.$

3. On commence par montrer que $A_{2n+1} = \frac{1}{2n+1} \sum_{k=0}^{n-1} \left(f\left(\frac{2k}{2n+1}\right) - f\left(\frac{2k+1}{2n+1}\right) \right) + \frac{1}{2n+1} f\left(\frac{2n-2}{2n}\right)$, puis on procède comme avant pour montrer que $A_{2n+1} \to 0$. Comme les suites extraites des termes pairs et des termes impairs tendent toutes les deux vers $0, A_n \to 0$.

Exercice IV.1:

- 1. On applique TL à la fonction cos à l'ordre 4 en 0 : $\cos(0) = 1$, $\cos'(0) = 0$, $\cos''(0) = -1$, $\cos^{(3)}(0) = 0$ et $\cos^{(4)}(x) = \cos(x)$. La fonction cos est bornée par 1 sur \mathbb{R} , donc pour tout $x \in \mathbb{R}$, $|\cos(x) (1 x^2/2)| \le \frac{|x|^4}{4!} = \frac{x^4}{24}$.
- 2. On a : $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{N}$, $\exp^{(k)}(x) = \exp(x)$, donc on applique TL directement sur l'intervalle [0, x].
- 3. $f: x \in]-1, +\infty] \mapsto \ln(1+x)$ est de classe \mathscr{C}^{∞} et $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$ pour $k \ge 1$. Donc pour tout $n \in \mathbb{N}^*$, et pour tout $x \in [0, +\infty[, |f(x) \sum_{k=1}^n \frac{(-1)^{k-1}x^k}{k}| \le \frac{|x|^{n+1}}{(n+1)!} n! = \frac{x^{n+1}}{n+1}$. On prend alors x = 1 et on trouve $\lim u_n = \ln(2)$.